
33

Topsl: A domain-specific language for on-line surveys

Mike MacHenry
Northeastern University
dskippy@ccs.neu.edu

Jacob Matthews
University of Chicago

jacobm@cs.uchicago.edu

Abstract

There are currently few choices for social scientists who want to
employ web-based surveys in their studies. They can either use
a special-purpose language whose notion of flow control may be
too limiting to express advanced survey designs, or use a general-
purpose language that gives them the freedom to make complicated
survey designs but makes them reimplement infrastructure code for
saving questions to disk, generating HTML, and so on with each
new survey. In this paper, we introduce Topsl, a domain-specific
language embedded in PLT Scheme that takes the middle road, giv-
ing survey authors a way to reuse survey infrastructure for new sur-
veys while also allowing them to express complicated survey de-
signs easily.

1 Introduction

As social scientists have become more aware of the practical and
theoretical benefits of gathering information online [2], the demand
for web-based surveys has grown significantly in recent years. Un-
fortunately, technology has not improved to meet this demand. So-
cial scientists want to design surveys that interact with participants
in complicated ways that current survey languages are not capable
of expressing.

Existing domain-specific languages (DSLs) for on-line surveys
such as SuML [1] and QPL [10] have a limited notion of con-
trol flow. In all domain-specific survey languages the authors have
found, the fundamental notion of the flow from one piece of a sur-
vey to the next is built-in and unchangeable. That means that while
simple surveys are easy to implement, if a programmer wants to
add a seemingly minor extension that affects the survey’s flow, he
or she may find the task impossible.

For example, the authors were introduced to this problem by Dr.
Eli Finkel, assistant professor of psychology at Northwestern Uni-
versity, in the fall of 2003. Finkel found that while a plethora of
contracting companies thought it would be technically feasible to

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming.September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Mike MacHenry and Jacob Matthews.

loop over a user-provided input list if the user provided all items
at once, none could provide the same looping facility if the user
provided the items one at a time over multiple survey sessions.1

When studies run into these limitations, programmers resort to im-
plementing them in a general-purpose language (GPL) such as PHP
or Perl that allow them to express anything they want (as evidence
that this is a popular approach, Fraley recently published a how-to
guide on the subject for psychologists [4]). Unfortunately, if they
make that choice, they become responsible for handling HTML
generation, CGI, and data storage, all of which is unrelated to the
specific survey being written. In the authors’ direct experience, on-
line surveys are plagued by bugs in this non-domain-specific code.
For instance, in one case an on-line sociology survey implemented
from scratch had a bug in its answer-saving routines that caused it
to lose a significant portion of answers. When the bug was discov-
ered, the researchers had to contact all the participants and ask them
to fill the survey out again; only a fraction of the participants actu-
ally did. Such incidents, though common, are an unacceptable risk
in expensive research.

It is natural that these two general strategies for solving the survey
problem should emerge. Survey programs exist to collect answers
to questions that will then be put into rows in a database or an-
alyzed by a statistics program, and that might be printed out for
copy-editing or for handing out to off-line survey participants. To
make those operations possible, all the questions a particular survey
could ask must be statically identifiable. Of course if a survey pro-
gram had complete freedom at runtime to generate questions, that
identification would be impossible. So, the problem must be made
easier, and two simple ways to make it easier are to restrict the lan-
guage in which programmers write surveys to the point where ques-
tions are statically identifiable, or restrict analysis to one particular
survey and do the analysis by hand.

Both available options have serious problems, though: current
DSLs afford too little flexibility in their models of flow control, and
GPLs make programmers implement substantial amounts of non-
domain-specific code for each survey. In this paper, we demon-
strate a way to take the middle path with Topsl, a domain-specific
language for writing on-line surveys embedded into the general-
purpose language PLT Scheme. We arrange the embedding so that
programmers can write survey code without having to worry about
non-survey-specific concerns, but can use the full power of PLT
Scheme when it becomes necessary.

We begin by explaining our design goals for the language, then

1Since survey authoring companies use similar in-house survey
creation software they suffer from the same limitations.

34

present the language’s syntax and semantics, and then discuss its
implementation. Afterwards we discuss how the unique features
of Scheme and PLT Scheme proved useful to our implementation,
assess our results and point out some directions for future work.

2 Design Goals

Topsl’s primary design goal is to provide a layer of abstraction that
allows programmers to express surveys clearly and without hav-
ing to write non-domain-specific code while still being expressive
enough to write surveys with novel control-flow elements. Further,
it should be easy-to-use in the sense that valid programs cannot fail
to save data or otherwise malfunction and a program’s final prod-
uct, a series of answers, should be immediately ready for analysis
in regular statistics programs.

2.1 Interoperability

One major motivation for Topsl is to eliminate the need for a pro-
grammer to write code that connects the fundamentally novel as-
pects of a particular survey to the technologies that manage pre-
senting that survey to participants and saving their responses. To
that end, the language must make that management invisible and
unbreakable; it must not require any special action on the program-
mer’s part for a survey to appropriately interact with participants
and save results.

Topsl also needs to interface with existing technology used by so-
cial scientists in order to be useful. When social scientists conduct
surveys, they store results in statistics program databases to ana-
lyze results. Importing results into a statistics program requires
prior knowledge of the questions since a column will need to be
created in the database for each possible question. So when so-
cial scientists design on-line surveys, they need the systems they
use to create static summaries of their surveys, containing a set of
all possible questions. Each question needs an identifier consistent
with the dynamic implementation and question text with possible
place holders where dynamic information will be filled in at run-
time. Topsl must ensure that all surveys can be analyzed to produce
a static summary.

2.2 Expressiveness

Handling web-programming details and interfacing with statistics
programs is not enough. Social science surveys commonly use
complex designs with control flow such as that present in Finkel’s
survey. For instance, the authors recently heard of a novel survey
design in which husband and wife pairs participated cooperatively.
Within each pair, one participant’s answers affected the questions
the other was asked. Topsl should allow programmers to express
such complicated calculations using full Scheme where necessary.

In his paper, ”A Universal Scripting Framework” [11], Shiv-
ers advocates the embedding of domain-specific languages within
general-purpose languages to increase the expressiveness of the
DSL. Topsl needs to allow programmers to “break out of the [DSL]
in order to express complex computations in a [GPL]” so that com-
plicate surveys are possible to write.

Unfortunately, allowing full Scheme in Topsl programs is at odds
with our goal of automatically generating static summaries. Al-
lowing the programmer to generate surveys using arbitrary Scheme
makes statically listing all possible questions undecidable for many
surveys, so some compromise is inevitable. However, since in prac-

tice even surveys with exotic designs have an obvious and pre-
dictable set of questions that will be asked, Topsl can realistically
enforce a restriction that all surveys written in the language be ana-
lyzable to produce a static summary while still letting programmers
write surveys with complicated control flow.

2.3 Language Growth

Languages that try to guess up-front everything their users will ever
want to do tend to find that they’ve guessed wrong. In “Growing
a Language,” Steele writes that “. . . a main goal in designing a lan-
guage should be to plan for growth” [7]. Topsl programmers should
be able extend the language with new features to meet these needs.
Just as in Scheme, Topsl users should be able to extend Topsl’s syn-
tax and add new functions as necessary — in addition, they should
be able to add new question types and formatting options if need be.
Topsl must be carefully designed to let programmers create these
extensions in such a way that surveys using them remain statically
analyzable.

3 Design

A Topsl survey contains a definitions context and any number of
Topsl forms which make up the survey’s control flow. The most ba-
sic Topsl form is the page, which is constructed from any number of
page elements. The most basic page element is the question (writ-
ten?). Questions take a question type and any number of strings or
variables that make up the question text. Topsl provides basic ques-
tion types likefree(for free response questions) andyes-noas well
as functions that produce new question types likeradio andmulti-
selectfor selecting from a list of responses. A simplified Topsl
syntax is as follows:

survey ::= <definition>* <survey-element>*
definition ::= (define<variable> <scheme>)
survey-element ::= (page<page-element>*)
page-element ::= (? <question-type> <question-text>*)
question-type ::= <variable>
question-text ::= <string> | <variable>

We present Topsl as a series of example surveys, augmenting the
syntax with new forms as examples become more complicated. We
start with a trivial example survey and show how to add abstraction
and control flow to the language while still retaining the ability to
generate a static summary.

3.1 A Simple Survey

We can usepageand? along with a few question types to create
a simple example of a complete Topsl program. In the following
example, we define a new question type,enjoy, and then create two
pages containing two questions each.

(defineenjoy(radio " A lot" " Some" " Not at all"))
(page(? free" Where did you go to high school?")

(? enjoy" How did you like it?"))
(page(? free" Where did you go to college?")

(? enjoy" How did you like it?"))

When a participant visits the web page associated with this survey,
the survey will display a page containing the appropriate questions
(see figure 1). When the participant fills out the form and submits
it, a second similar page will be presented, followed by a page in-
dicating that the survey is over.

35

Figure 1. Example minimal HTML from a Topsl survey

Every time a participant fills out a Topsl survey, Topsl creates a
response file where that participant’s responses will be stored. Re-
sponse files are a partial mapping from question identifiers (deter-
mined statically using the survey’s static summary) to responses
that represents the answers to all questions that were asked during
execution. Similarly, a survey’s static summary is a mapping from
question identifiers to question text for all questions that could pos-
sibly be asked. The static summary of the above survey would look
something like:

’((q1 " Where did you go to high school?")
(q2 " How did you like it?")
(q3 " Where did you go to college?")
(q4 " How did you like it?"))

The question identifiers from the static summary can then be used
to create a database table or a statistics file. Using the static sum-
mary and any number of response files, Topsl can create comma-
separated value files suitable for importing into most typical spread-
sheet and statistics programs used by social scientists. With the
static summary and a particular response file, Topsl can correlate
questions and responses in a browser for easy reading. The static
summary is also useful for proofreading question text and for cre-
ating printable surveys for off-line participants.

3.2 Page Construction

Since Topsl is a domain-specific language for on-line surveys rather
than a web-page construction language, survey authors should be
able to express their surveys as surveys and not have to use any
HTML or otherwise specify presentation. To support that, Topsl’s
design factors the presentation of a question from the question itself
by making use of values we call page elements (? being one exam-
ple). A page element is a value with a particular meaning in the
domain of web surveys (e.g.a question, a grouping of questions, or
a block of instruction text) that contains information about how to
render itself and how to determine what answers a user submitted
that correspond to it. The separation is general enough that it al-
lows page elements to represent questions that correspond directly
to individual HTML form elements, questions that correspond to
multiple form elements, and even question groupings that alter pre-
sentation but that do not directly correspond to form elements at
all.

In addition to providing several built-in page elements, the language
must allow advanced users to create their own: we cannot predict
every kind of question any researcher might ever want to ask, so we
should not restrict them to only the kinds of questions we thought
of when we designed the language.

3.3 Abstract Pages

Surveys frequently ask sets of questions in which each question
differs from the other only in very small ways. For instance, the
survey in the first example asks the participant the same set of two
questions twice, once asking participants whether they enjoyed high
school and the next time asking whether they enjoyed college. In
the survey we built for Finkel, a block of four questions asking the
participant to predict how he or she would feel about a particular
topic two weeks, one month, two months, and three months in the
future was repeated seven times in the course of the survey with the
same phrasing each time, varying only in the topic the questions ad-
dressed. In situations like these we need to be able to make an ab-
straction over a page parameterized over the pieces that vary. Topsl
is designed to handle such situations using a form of abstraction that
looks syntactically just like a normal Scheme function definition:

definition ::= ... as before ...
| (define(<variable>+) <survey-element>+)

We can now use this newdefinesyntax to abstract the original ex-
ample survey.

(defineenjoy(radio " A lot" " Some" " Not at all"))
(define(where-attended school)

(page(? free" Where did you go to " school" ?")
(? enjoy" How did you like it?")))

(where-attended" high school")
(where-attended" college")

Herewhere-attendedis an abstraction over a page parameterized
over the school to ask the participant about — it takes a school
as input and produces a page as output. The definition ofwhere-
attendedcan make use of variables in question text, and the param-
eterized page can be applied to arguments multiple times to yield
multiple different pages. However, despite appearances,define in
Topsl is not the same as the normal Schemedefine and does not
bind where-attendedto a normal Scheme procedure. Instead, it de-
fines it as a Topsl procedure that runs at compile-time rather than at
run-time, and can only be used in contexts that accept Topsl.

3.4 Dynamic Surveys

In order to write surveys whose question responses affect survey
control-flow we need a way to access the question responses while
the survey is still running. Topsl allows this with another page ele-
ment,?/named, that allows a programmer to name a question, and
bind, which binds the response of a named question to an identifier
which is accessible by other Topsl code. Thebind form takes a
list of identifiers to bind to named question responses and a page in
which the named questions can be found.

36

We have now seen two ways of displaying pages in example sur-
veys: simple page expressions constructed with thepageform, and
applications, which apply a parameterized page to arguments. To
allow both mechanisms of page displaying inbind expressions we
lift the pagesyntax into a new production,page-expr, and make it
a new survey element:

survey-element ::= ... as before ...
| <page-expr>
| (bind (<variable>*) <page-expr>)

page-expr ::= (page<page-element>*)
| (<variable> <scheme>*)

The?/namedform is identical to? except that it takes an additional
identifier as its first argument which will be used as the question’s
name, significant only tobind and to the survey’s static summary
(which uses it as the question’s reported name rather than automat-
ically generating a name for it).

Thebind form displays the page in its page expression to the par-
ticipant and then binds the given names to the values the participant
supplied in any subsequent expressions. The page is required to
provide at least those names extracted by bind. The behavior of
questions that exist on the page but which are not answered by the
participant is specified by the question type. For this paper, we use
only mandatory question types, which Topsl requires the participant
to answer or it will redisplay the page. We can use the?/namedand
bind forms to construct the following survey:

(bind (fav-num)
(page(?/namedfav-num free" What’s your favorite number?")))

(page(? free" Why do you like " fav-num" ?"))

This survey asks a participant two questions, the second of which
has text that cannot be determined until the first one is answered.
When this survey is visited on the web it will ask the participant
for his or her favorite number. When the page is submitted, the next
page will have one question which will ask the participant why they
like the number he or she submitted, which will be contained in the
question text.

Clearly Topsl cannot know the complete text of dynamically-
determined questions when generating a static summary. In such
cases, the static summary uses the identifier in the question text as a
placeholder for the dynamic value. For instance, the static summary
of the above survey looks like this:

’((fav-num " What is your favorite number?")
(q2 " Why do you like " fav-num " ?"))

3.5 Adding Control Flow

If we did not need to support static summaries, then making the?,
pageand related Topsl forms behave exactly as normal functions
would be ideal. However, were we to make that design decision,
static summaries would be impossible to build. For instance, the
following program would be legal even though the number of ques-
tions on any given page cannot be determined:

(define(problem n)
(if (zero?(random2))

’()
(cons(? yes-no" Is " n " prime?")

(problem(add1 n)))))
(applypage(problem0))

We could use a static-flow analysis algorithm such as the set-based
analysis (SBA) system developed by Meunieret al to indicate what
values could possibly flow into questions and pages [9], but even the
best of those techniques are too conservative for our needs. Using
the values obtained from SBA to construct a static summary would
generate possibly infinite number of questions that would never ac-
tually appear in the survey, making it impossible to construct the
static summary in some cases.

To be able to generate static summaries reliably, we restrict the syn-
tax of Topsl so that the contents of every page and every question a
Topsl program will display is syntactically apparent (perhaps with
information that does not affect the number of questions on a page),
and let the static summary include all questions that appear syntacti-
cally in the program. This restriction does not eliminate all analysis
errors since questions that a Topsl program can never reach will be
included in its static summary, we believe errors of that nature will
not be important in practice.

The biggest impact of that restriction is that Topsl code cannot in-
termingle arbitrarily with Scheme code. To ameliorate that situa-
tion, Topsl includes its own control-flow forms that enforce syn-
tactic restrictions to allow for analysis but give programmers sig-
nificant power over the flow of their surveys. We will show two
examples of control-flow forms,whenandfor-each:

survey-element ::= ... as before ...
| (when<scheme> <survey-element>+)
| (for-each<variable> <scheme>+)

Both forms behave similarly to their Scheme namesakes. If the test
position of thewhen form is a true Scheme value then the conse-
quent Topsl expressions are executed. Thefor-each form takes a
variable which must be defined as a parameterized page. All sub-
sequent Scheme expressions must evaluate to list values whose el-
ements will be used as arguments to the parameterized page. For
instance, arbitrary Scheme is allowed in the test position of Topsl’s
when form, but the consequents must be Topsl forms. This re-
striction allows us to easily extract the static summary by listing the
questions found in all control paths without having to perform static
evaluation of full Scheme to determine what those paths could be.

We can now construct a more interesting survey where the re-
sponses affect control flow. The survey in figure 2 uses the multi-
select function to create a new question typecountrieswhich will
allow the participant to select any number of countries from an
HTML selection box. We then define a page,about, which takes
a string,country, and asks a participant the questions we are inter-
ested in. The survey then uses thebind form to bind two variables,
england?, a boolean value from the yes-no question, andbeen-to,
which is a list of strings selected from the multi-select box. The
survey useswhen to ask the participant about England ifengland?
is true and then loops over the other countries the participant has
been to, asking about those.

3.6 Finkel’s Loop and the Typical Expression

In the previous example we loop over the return value of amulti-
selectbox, but Topsl also needs to be able to loop over values gen-
erated from arbitrary computations such as lookup in a database.2

We support this feature by allowing programmers to define arbi-
trary Scheme functions and apply them in control-flow forms where

2It was this specific feature that professional survey authoring
companies could not provide Finkel.

37

(definecountries(multi-select" Germany" " France" " Spain"))
(define(about country)

(page(? yes-no" Did you like " country" ?")
(? yes-no" Is it cold in " country" ?")))

(bind (england? been-to)
(page(?/namedengland? yes-no" Have you ever been to England?")

(?/namedbeen-to countries" Where else have you been to?")))
(when england?(about" England"))
(for-each about been-to)

’((q1 " Have you ever been to England?")
(q2 " Which other countries have you been to?")
(q3 " Is it cold in England?")
(q4 " Did you like England?")
(q5 " Is it cold in " country " ?")
(q6 " Did you like " country " ?"))

Figure 2. A complete Topsl survey with static summary

Scheme is allowed. In the following example we use a Scheme
function, get-all-other-countries, which takes the list of countries
the participant was asked about above and returns all the other coun-
tries found in a database.

;; definition ofget-all-other-countrieselided
(for-eachabout(get-all-other-countries been-to))

We have now shown both extremes of how a Topsl programmer can
use Topsl forms to control flow. In the simple example the program-
mer branched and looped over the responses of questions. In the
most recent example the programmer wrote a complicated Scheme
program to loop over. In the authors’ experience, the complexity of
most conditionals fell somewhere in the middle. It was particularly
common to have a nested boolean expression with a few common
Scheme predicates on the question results. For example, the code
snippet below can be used to decide whether the subject has a pass-
port and then ask pertinent questions. For the sake of example, the
authors assume that if a participant has been to more than one coun-
try then he or she has a passport.

(when (or (> (length been-to) 1)
(and england?(not (empty? been-to))))

(page(? free" When did you get your passport?")))

Allowing simple expressions like the one in the predicate position
above gives Topsl a simple learning curve. It is not necessary for
Topsl programmers to understand full Scheme, just the functions
they want to use. As a result a Topsl programmer’s knowledge can
scale with his or her increasingly complex surveys.

3.7 Growing Topsl

Topsl provides therequire from, taken from mzscheme, which al-
lows Topsl programs to import other modules containing new Topsl
forms. The modules the surveys require can be written in Topsl but
it is not required. As such programmers can extend the Topsl lan-
guage in languages other than Topsl itself, including full Scheme.
In doing so, the author of that module makes a trade off. He or
she gives up the safety ensured by Topsl forms and must take on
the responsibility of ensuring that static analysis is maintained and
that the new core forms behave as expected. However, he or she is
no longer restricted to what Topsl is able to express to create new
forms. This mechanism for extending a language using another
language, pointed out by Krishnamurthi [8], provides Topsl with
unbounded expressibility even the in presence of the static analysis
restriction, allowing the language to grow in ways not anticipated
by its authors.

4 Implementation

Implementation of the “dynamic” portion of Topsl — that is, the
portion that presents web pages to a user and stores that user’s re-
sponses — is reasonably straightforward. The user’s program be-
comes a servlet for the PLT web server [6]. The server handles
session management and other HTTP-related issues and allowed us
to think of the web as a normal input/output device, greatly simpli-
fying our development effort. Topsl programs are the composition
of Scheme macros and functions that generate XHTML pages en-
coded as S-expressions and hand them off to the PLT web server for
shipping to the users. We prevent programmers from using other
Scheme code in arbitrary positions with the PLT module system,
which allows us to provide an alternate language for programs.

While this approach works very well, it does have one important
problem. The semantics of the PLT web server do not exactly match
those we need for Topsl programs: we found that a user answering
a question was most naturally modeled with a destructive update to
a global record, with the caveat that if a participant hits the back
button the answer is erased. Unfortunately, the PLT server does
not undo destructive updates to variables when a user hits the back
button. However, it does restore the values of lexically-bound vari-
ables, so we solved the problem by principled use of state-passing
style in our implementation: a record representing the current an-
swers to all questions is passed in to every function that needs to
read or alter them. After the survey is completed, the Topsl frame-
work passes this “result monad” to the data-storage module, which
writes it out. We were initially worried that this strategy might be
too memory-intensive on the server and that an approach in which
the framework immediately stored all answers in a database would
be necessary, but in practice even our relatively modest server (a
Pentium III-800 MHz with 128MB RAM) handled the load with no
problems.

Implementation of the static summary feature turns out to be mostly
trivial as a result of restricting Topsl’s syntax to only Topsl forms.
In a survey without abstraction, static analysis is trivial, the sum-
mary is essentially just the syntax of that survey minus any Scheme
expressions. Allowing parameterized pages means we need to stat-
ically expand any parameterized pages where they are applied. To
enable this, Topsl provides a specialdefine form which behaves
differently from the normal Scheme behavior when defining Topsl
values. Thedefine form expands its body and checks to see if that
body expands to a Topsl core form. If it does, thedefineexpands
to a define-syntax. If not, it expands to a regular Schemedefine.
Macros cannot be higher-order; however, parameterized pages are
only available from within Topsl, and the Topsl forms such asfor-
each that treat pages as higher-order functions can be written to
cope with the altered interface.

38

5 What Does Scheme Give Us?

Scheme has a powerful macro system that allows us to write Topsl
forms in terms of Scheme in a very clear and easy-to-maintain man-
ner while avoiding the need to write a parser and compiler from
scratch. Scheme’s macro system also provides us two very impor-
tant additional advantages. First, since Topsl is defined as a collec-
tion of macros over Scheme, we get seamless escapes into Scheme
without any complications. That is, we do not have to marshal data
or define a communication “wrapper” layer for communicating be-
tween Topsl and Scheme: under the hood, it’s all just Scheme. Sec-
ond, extending the language with new syntactic forms is a simple
process of defining a macro over existing Topsl forms. That allows
us to grow our language to meet the unforeseen requirements of
future surveys without having to edit the Topsl compiler.

6 What Does PLT Scheme Give Us?

The PLT Scheme suite provides two tools that make our work eas-
ier: the PLT module system and the PLT web server.

The PLT module system gives us a flexible way to build languages
from other languages [3]. Writing Topsl as a module language gives
us the ability to compile Topsl code in any way we choose, taking an
entire program at once rather than dealing with one subexpression
at a time as we would have to with normal macros. It also allowed
us to reuse existing Scheme code in our implementation without
having to handle name space collisions.

The continuation-based PLT web server [6] made it much easier
for us to make language constructs that query a web user for in-
put. Topsl is an imperative language where presenting a page to a
participant is implemented as a call to a function that returns the
participant’s answers and presents the page to that participant as a
side effect. The PLT web server allows us to ignore the complica-
tion of web-based communication and implement that feature in a
natural way, without worrying about implementing the complicated
transformations that would otherwise be necessary to make it work
properly [5].

7 Experience

Topsl’s first application, and our motivation for developing it, was
an on-line survey used in a longitudinal study of dating relation-
ships at Northwestern University. The survey had 70 participants
each of whom was asked to visit the survey site once every two
weeks and answer some subset of the survey’s 248 unique questions
that depended on his or her answers from all previous sessions and
from the current one: for instance, if the participant had reported
that they started dating someone in one session and said they were
single in the next, the survey would proceed to a page of questions
about the breakup. Also, every time a participant broke up with
someone, that person’s initials were added to a list; on every subse-
quent session the survey would present a few questions about each
person on that list.

We found Topsl to be an invaluable asset in developing the survey.
It let us focus on the survey’s particular unique features without
needing to worry about our changes introducing bugs in the under-
lying mechanisms that handled sessions and data storage. For that
reason, we were able to develop the survey extremely rapidly given
its complexity: we developed prototypes of both the language and
the survey in two days, and afterward we were able to modify the
survey easily to suit the various revisions its designer requested.

For instance, one early revision requested was that we randomize
the order in which questions in certain groups were presented to
participants. We accommodated that request by writing a Topsl ex-
tension that introduced a new page element that randomly shuffled
its sub-elements when it presented them on-screen. Data storage
and other aspects of presentation were unaffected, so we were able
to make the change and be confident of its functionality in only a
few hours.

The static summary technique discussed in this paper was devel-
oped as a result of failings in that prototype. Our original design
required giving every question a unique name and further required
a redundant listing of that name in some situations. We found the
burden of naming each question quickly became a maintenance
nightmare: a request to insert or remove a question would ruin our
naming strategy, and changing a name in one place but not another
would cause apparent data loss. The survey summary technique
avoids this problem while still giving us more than enough flexi-
bility to implement our original survey and every other survey we
have seen since.

8 Related Work

There are a considerable number of mechanisms for creating on-
line surveys apart from implementing them in a general-purpose
language. Two domain-specific languages, SuML and QPL, stand
out as being the closest to the goals the authors set for Topsl.

SuML is an XML/Perl-based survey language in which the pro-
grammer describes a survey in an XML document which follows
the SuML Schema. The SuML Schema has aquestion element
which contains question text and a sequence of allowable responses,
much like Topsl. The rootsurvey element contains any number of
questions and arouting element that describes control flow. The
routing element contains any number ofif andaskelements which
are composed to ask questions in the survey and branch on their
responses.

The programmer creates two files in addition to the content of the
survey: an XSLT stylesheet and a front-end Perl CGI program. The
style sheet is responsible for describing what a survey will look like
when presented on the web to a participant, and multiple stylesheets
can be written for different mediums. The front-end is a Perl CGI
program that acts as the entry point to the survey.

SuML’s most significant problem for our purposes is its notion of
control-flow is very limited, providing its users with only anif state-
ment with which to branch to different parts of the survey. Further-
more, the test position of theif is written in language for accessing
various fields of the XML allowing the programmer to reference
question responses. This approach limits control flow to being af-
fected by only responses given in the current survey execution.

In addition, SuML is somewhat too generic for our purposes. The
user-written Perl CGI is in charge of driving the survey by using
SuML’s Perl API to get the next questions to be asked and then
present them as well as storing the results of the questions asked.
Putting the burden on the programmer makes survey development
more difficult, time-consuming, and error-prone.

QPL is another domain-specific language for creating surveys that
suffers from very similar problems to SuML’s. QPL’s semantics
are reminiscent of BASIC: it is an imperative language usingif and
goto for control flow along with a large set of built-in predicates

39

used for conditional testing. Current distributions provides users
with a large set of comparison functions for use withif ; however, it
lacks an means of growing to meet programmers’ changing needs.

9 Further Work

One major avenue of future work we plan on pursuing is mak-
ing it easier for non-programmers to develop simple surveys in
Topsl. While programmers who want a rapid way to develop sur-
veys and are experienced with Scheme should find Topsl intuitive,
social scientists who have no programming experience may have
difficulty with it. To that end, we suspect that providing a graphi-
cal syntax with a WYSIWYG page construction to make the syn-
tax more like word processing would make Topsl more natural for
social scientists. Syntax for forms likewhen and for-each have
been taken from Scheme to meet our programmer audience’s ex-
pectations of how they should be used, but a graphical syntax that
relates pages with flow-control arrows would be more natural for
non-programmers. We expect to be able to implement this syntax
with the help of PLT Scheme’s MrEd toolkit and the substantial
graphical editing features of DrScheme.

We would also like to investigate the possibility of adding shared
question and page libraries to Topsl. Since social scientists often
include the same questions verbatim on multiple surveys to make
the surveys more easily comparable, shared libraries are a natural
fit. However, they pose some interesting problems: with our cur-
rent design, for instance, every question whose answer is important
to a survey’s flow control must be named explicitly in its declara-
tion. In a library, this would not work out well since library authors
would have to give every question a name (which is impractical in
our experience) or guess which questions will be important to fu-
ture surveys (which would force users to copy the library and make
source code modifications if the library author guesses wrong). A
solution to this problem would be quite useful, so we consider it an
important topic to investigate.

10 Contributions

We have designed and implemented a survey language system that
uses Scheme’s capacity to build new languages to solve a pressing
problem in many of the social sciences. In the process, we have
illustrated the power of building new languages to simultaneously
make programs easier to write and less error-prone.

11 Acknowledgments

The authors would like to thank Matthias Felleisen for invaluable
guidance throughout the development of this project.

12 References

[1] Barclay, Lober, Huq, Dockery, and Karras. SuML: A survey
markup language for generalized survey encoding. InAMIA
Annual Symposium, 2002.

[2] Michael Birnbaum, editor.Psychological Experiments on the
Internet. Academic Press, 2000.

[3] Matthew Flatt. Composable and compilable macros. InICFP,
October 2002.

[4] R. C. Fraley.How to conduct behavioral research over the In-
ternet: A beginner’s guide to HTML and CGI/Perl. Guilford,
2004.

[5] Graunke, Findler, Krishnamurthi, and Felleisen. Automati-
cally restructuring programs for the web. InAutomated Soft-
ware Engineering, 2001.

[6] Graunke, Krishnamurthi, Van der Hoeven, and Felleisen. Pro-
gramming the web with high-level programming languages.
In ESOP, 2001.

[7] Guy L. Steele Jr. Growing a language.Journal of Higher-
Order and Symbolic Computation, 12:221 – 236, October
1999.

[8] Shriram Krishnamurthi.Linguistic Reuse. PhD thesis, Rice
University, May 2001.

[9] Meunier, Findler, Steckler, and Wand. Selectors make anal-
ysis of case-lambda too hard. InScheme and Functional
Programming, 2001.

[10] U.S. General Accounting Office. QPL. Software:
http://www.gao.gov/qpl/.

[11] Olin Shivers. A universal scripting framework or lambda: the
ultimate ‘little language’.Concurrency and Parallelism, Pro-
gramming, Networking, and Security, Lecture Notes in Com-
puter Science, 1179:254–265, 1996.

40

