Foreign Interface for PLT Scheme

Eli Barzilay
Northeastern University

Dmitry Orlovsky
Northeastern University

Abstract Foreign function interfaces are subsystems that create such glue

) _code, simplifying an otherwise tedious and error-prone task.
Even a programmer devoted to Scheme may prefer using foreign

libraries in certain situation. Connecting the two worlds involves)

glue code, usually using C, which requires significant program- 1.2 Foreign Interfaces

ming efforts and system expertise. In this paper we describe a - . L . ,

PLT Scheme extension for interacting with foreign code, designed 1here are lots of existing foreign function interfaces; Urban’s FFI
around a simple philosophystay in the fun worldeven if it is no survey [17], although an incomplete project, provides a good dis-
longer a safe sand box. Our system relieves the programmer fromCuSSion of such systems and relevant issues. Generally speaking,
low-level technicalities while keeping the benefits of Scheme as a SUch interfaces can be classified as either static code generators or
better programming environment compared to C. dynamic foreign interfaces. In principle, the two are quite similar:

e A static foreign interface is created and compiled statically,
beforerunning the program that intends to use it;

e A dynamicinterface is created at run-tim&hile the applica-
tion is running.

1 Introduction

Scheme has proved itself as a useful and fun language, good
for both general-purpose and domain-specific usages. However,
schemers cannot assume a closed system; other languages will aln practice, the differences are more dramatic:
ways exist, leading to a need for interfacing with functionality that
is accessible through foreign libraries. Such libraries come in many
different flavors, but the popular ‘least common denominator’ has
been, and still is, plain C librariés Our goal is to create a mech-
anism within Scheme for smooth interfacing with such foreign li-
braries.

e A static interface is usually implemented ugia C compiler.

The advantage of this approach is that it is easy interface for-
eign code, as most of it is intended to be linked in using a
compiler (for example, C header files are used to describe
an interface), and since most languages are implemented in
C, they provide convenient facilities for calling C functions.
Disadvantages of the static approach include being restricted
to the pre-compiled interface, requiring either a compiler or a

A foreign interface is a piece gflue codeintended to make it pos- platform c_jependent plnary distribution for tSUCh COd?'

sible to use functionality written in one language (often C) avail- ~ ® A dynamic interface is generated at run-time, leading to the
able to programs written in another (usually high-level) language. obvious advantage of requiring no C compiler or binary dis-
Such glue code involves low-level details that users of high-level tributions. This has a significant effect on dynamic languages

languages usually take for granted. For example: like Scheme, where single running REPL can be used to con-
nect to different libraries, supporting exploratory program-

1.1 Background

e marshaling objects to and from foreign code,
e managing memory and other resources,

e dealing with different calling conventions, implicit function
arguments, etc.

ming in a natural way. The disadvantage of this approach
is that it requires more (platform-dependent) low-level work
such as stack management and creating stubs (glue functions),
while not getting the usual support froa C compiler.

. o The issues that need addressing are essentially the same ones de-
Different languages can be used to create foreign libraries, “C” scribed in Section 1.1, only the approach differs. The technical is-

is only used as a generic label. sues involved in an interface implementation make static interface

generators more popular. It should be noted that it is common to

call these systems “foreigiunctioninterfaces” — in the follow-

ing text we prefer “foreign interfaces” as these interfaces deal with

accessing foreign objects as well as foreign calls.

Permission to make digital or hard copies, to republish, to post on servers or to redis- In bOt_h t_he static and the dyne_1r_n|c cases, Itis de_S'rable to have some
tribute to lists all or part of this work is granted without fee provided that copies are description of the foreign entities, usually functions, in a way that
not made or distributed for profit or commercial advantage and that copies bear this can help automate the process of generating the glue layer. In this
notice and the full citation on the first page. To otherwise copy or redistribute requires context a “function” can be viewed differently depending on your
prior specific permission. . . . SO .

point of view: from the low-level side, a function is simply a pointer

Fifth Workshop on Scheme and Functional Programm8eptember 22, 2004, Snow- s = >
bird, Utah, USA. Copyright 2004 Eli Barzilay. and a description of how it is called; from the high-level Scheme

63

side, it is an object that is expected to have the usual function se-Section 4 demonstrates how our system copes with some of the
mantics.Interface description languaggiDLs) have a major role common and uncommon situations that interface programmers deal
in foreign interface systems — these are languages that express amwith. We conclude with a related work comparison, and outline fu-
bitrary function behaviors for both of these viewpoints: ture plans.

e On the C side, there is the type definition of the function, and
possibly additional information such as input/output pointers,
object ownership, etc.

¢ In addition to this, there are details that are related to the Our design follows a simple principle: keep C-level functionality to

Scheme side. For example, automatic memory managementa minimum. The core of a system for interfacing foreign libraries
issues, value marshaling, dealing with aggregates (vectors andmust itself be written in C, but we try to make such functionality

2 Goal: Use Foreign Libraries, Avoid C

structs), and creating new object types. available to Scheme as soon as possible, putting more responsibility
e On the Scheme side, the result is a plain procedure, like any On the Scheme level. When dealing with the many details of the
other Scheme procedure object. interface, mainly type declarations and data marshaling, there is a

) i) o natural tendency to make a system that is rich in features. We avoid
Ideally, the IDL that is used to describe the interface is rich enough dealing with such complexities in C when possible, providing just
to express both views while providing enough information to com- enough of an interface that makes it possible to do it in Scheme

pletely automate the interface generation. instead. The combination of a dynamic interface and a minimalistic
C-level implementation that should be complemented by Scheme
1.3 Implementing a Dynamic Interface code are the main features that make our approach unique.

The low-level mechanics of foreign function calls are usually very Switching more responsibility to Scheme comes with benefits that
demanding: managing functions at the binary level is inherently are familiar to Scheme programmers, but there is an additional ad-
platform dependent, and can even require assembly code or othevantage that is important in this particular case: the important is-
compiler-specific hacks. Statically, these problems are not too dif- Sue is generating glue code that bridges the gap between foreign
ficult: simply generate C glue code, and let the C compiler do its libraries and the high-level language. In the static case this involves
usual work. Doing this efficiently in a dynamic fashion is difficult, ~either complex yet limited C preprocessor acrobatics (e.g., SWIG
since it is usually not desirable to drag a complete C compiler into [1] goes as far as implementing its own C parser). On the other
your run-time. Dealing with the dynamic aspects of foreign func- hand, Scheme already comes with a superior syntax system, and
tions is greatly simplified using a library that handles the low-level PLT Scheme makes this even better with additional language fea-

details: we usébffi [11], a library that supports foreign function tures (syntax objects, module system, etc). This syntax system is
call-outs and call-backs. much easier for implementing sophisticated glue code with, espe-

. . . . cially considering our target crowd which undoubtedly feels more
e A call-out is a normal function call. In a dynamic setting, at home in the Scheme world.

we create a “call-interface” object which specifies (binary)

input/output types; this object can be used with an arbitrary For example, consider the issue of primitive foreign types that
function pointer and an array of input values to perform a call- are handled by an interface. Once we can move C integers from
out to the function and retrieve its result. Doing this requires Scheme to C and back, we might consider extending the system to
manipulating the stack and knowing how a function is called, deal with C enumerations. This raises a few questions regarding the
these are details thétffi deals with. interface design — how should this C definition:

e A call-back is trickier. Our Scheme implementation has sev- typedef enum { fool, foo2, foo3 1 foo;
eral fixed C-level functions which can implement arbitrary
Scheme evaluation. A callback is, however, a simple func-
tion pointer — no additional information is available. Modern ¢ Should we provide three integer bindings? If so, how do we
systems (e.g, Gnome) that use callbacks allow user to regis- deal with name clashes?
ter a function pointer together with an arbitrary data pointer, o otherwise, should we use a mapping from strings to integers?
but there is no standard way for this. A proper solution is Maybe use symbols? What about enumerated values that are
one that allows creating general “C closures” — combining a or-able bit patterns? How should such a map be implemented:
function and a data pointer into a single new function pointer. as a linked list? A vector of constant names? A hash table?
Again, this is technically challenging, as it requires generat-
ing stub functions at run-time, which, when applied to some Answers to these questions determine the nature of the C imple-
arguments, call the packaged function with the packaged datamentation; once it is written, trying alternatives lead to signifi-
pointer and the arguments. Agaiinffi provides the re- cant maintenance costs. Our design keeps such complications away
quired magic. from the C level, pushing them up to the Scheme side where there

are better ways to deal with them. For example, the C level part

of our interface does not commit to a specific implementation for
enumerations — it simply exposes C integers. Different strategies
are then implemented in the Scheme part, resulting in easier code
maintenance. In addition, some Scheme aspects are less accessi-
ble from C, making a Scheme solution even more attractive. for
example, implementing enumerations as bindings that use the mod-

1.4 Outline ule system to avoid global name-space pollution, or implementing

) o . them as syntax objects (removing run-time lookup costs) are both
In Section 2 we state the goal of our work, emphasizing our main mych harder to implement in C than in Scheme.

design principle. Section 3 describes our implementation, both
the C part of the code and the complementing Scheme module.Another important factor in the complexity of the C implementa-

be available for Scheme code?

libffi is maintained and distributed as part of the GCC project,
but its goal is to provide a portable library. We use it for all
platforms that PLT Scheme targets, including Windows (using a
slightly adapted version that works with Microsoft's compiler, cour-
tesy of the Thomas Heller [13]).

64

tion is the issue of safety. Scheme isaielanguage — as buggy as a new Scheme pointer object is introduced, then low-level func-
your code might be, you never expect the Scheme process to crashtions that deal with pointers are added. These are procedures that
if such a crash happens, the blame is in the language implementaallocate memory blocks (using one of severdlloc ’ variants),
tion. Using C extensions such as the ones that PLT Scheme alwaydree blocks (for GC-invisible blocks), reference pointers, and set
had, changes things a little — the code to blame can be either invalues at a pointer locations. This new functionality is useful in
the language implementation, or in the C extension. The invariant itself, even when there are no foreign libraries to interface with.
fact is that Scheme code can never be blamed for such crashes —or example, the procedural part of SRFI 4 [6] can now be trivially
they are exclusively considered a C-level problem. There is there- implemented in Scheme. Several foreign interfaces have a similar
fore a yellow caution tape around code that can be blamed for suchgeneric ‘pointer’ object, but it is usually viewed as a last-resort ob-
crashes: it lies exactly on the language boundaries, C on one sidgect when an unknown pointer is returfent when an interface is
and Scheme on the other. too lightweight for proper typés— this is in contrast to our view,
where a pointer object is taken as part of the fundamental frame-

A dynamic foreign function interface inevitably breaks this prop- \york that makes Scheme a viable C substitute for glue code.
erty: bad Scheme code that defines an interface to a foreign func-

tion can specify an integer argument where a pointer is expected, 5
leading to a crash (at best). Using dynamic interface systems does
not seem so bad though — a foreign function definition is written Our implementation consists of a C part, implementing the low-
in Scheme, but conceptually it is perceived as part of the C world. |evel functionality, and a Scheme part that builds on top of it. The
Scheme code, with the exception of such definitions, is still as safe C part of our interface is available as a built#tforeign ’* module

as it has always been, the yellow caution tape is moved just a little which is part of the MzScheme core of PLT Scheme (it is part of the
so it surrounds Scheme definitions of foreign interfaces too. This MzScheme executable). This implements the thin interface, provid-
point drives a dynamic foreign interface system to try to be as safe ing just enough to make it possible to fill in the gaps using Scheme.
as possible: if function interfaces are the only things that can lead This module is therefore intended to be used only by the Scheme
to crashes, then it is desirable to make the system safe in all otherpart of our interface: thelib “foreign.ss") " module which is
respects. For example, when dealing with pointers (arrays referenc-part of MzLib, serving as a wrapper around the internal bindings.
ing, allocations, garbage collection) safety issues go in the C code,For brevity, we refer to the Scheme module fagign .

making it much more complicated than it would otherwise be.

Implementation

The #%foreign ’ functionality that is implemented in C is de-
In contrast, our implementation extends traditional dynamic inter- scribed in Section 3.1, and the Scherfieign * module is de-
face systems by exposing more ‘dangerous’ operations. Function-scribed in Section 3.2.
ality that had to be part of the C world is now accessible in Scheme,
moving the yellow tape again to encompass more Scheme code3.1 The ‘#%foreign ’ Module: C-Level Interface
The average programmer is not concerned with this extra function-
ality, but interface implementors can now deal with more foreign The C implementation can be roughly divided into three parts, de-
code without leaving Scheme. Many design decisions that usually scribed in the following sections. Most of this is unrelated to for-
affect the C interface can now be pushed up to the Scheme level. eign libraries, but providing the framework that make such interac-

]] tions possible, and making Scheme rich enough to substitute C.
The issue of safety is now related to the module system: the new

foreign interface bindings are enclosed in a module. If a Scheme3.1.1 C Types
process crashes, the blame is either on C code, or on Scheme code
that uses this module: such code is therefore taken as substituting GC-type$ lie at the core of our system, as they provide the basic
code, potentially suffering from C’s usual illnesses. Code that does specifications for data that is passed on to and back from foreign
not use this module is expected to be as safe as it previously was. libraries. We need some way to specify the correlation between

)) tagged Scheme values and the various C types. This mapping is not
To summarize, the yellow caution tape surrounds more Schemegne-to-one: a single C type can be interpreted as several Scheme
code now: it lies at the C/Scheme language boeeeptfor code types, and a single Scheme type can be translated to different C
that uses the new module which is inside the tape. In essencetypes. We implement C type objects for this, available as new

using the a Scheme module is similar to a using Modula-3's [12] first-class Scheme values, accessible throughforeign * bind-
‘UNSAFE keyword to declare unsafe code. Quoting Harbison [12, ings. Each C type object has three main parts:

Section 13.3.1] from the Modula-3 book:

Modula-3 also provides unsafe features, but it differs from
many other languages in isolating those features. The unsafe

e The actual C type thatitrepresentdilfiii ~ type descriptor),
e Code that translates corresponding Scheme objects to C,

language features are accessible only in interfaces and modules e Code that translates such C values to Scheme objects.

that are labeled by the keywoktNSAFE[...] When all mod- " . e . .

ules and interfaces are safe, Modula-3 guarantees that there will In addition, there is some utility information such as a predicate,
be no unchecked run-time errors. By introduclSAFE the byte size and alignment. The translation code for these primitive
programmer assumes part of that burden. C types is implemented in C. Table 1 presents a summary of the

Our system is slightly different in that Scheme modules can provide current built-in primitive types

additional functionality for interface writers, meaning that they will
not provide a safe interface, making them have a status similar to,
that of the new module. This means that rather than a fixed set of
unsafe language features, we have a system where these featureasn
can also be extended.

2For example, the SWIG manual usesalloc , realloc and
e as a simple interface example which uses pointer objects.
30ur cpointer type pre-existed for PLT Scheme extensions,
d was intended for “extensions with modest needs”.
4Again, “C” is only used as it reflects binary level objects.
An example of this design philosophy is our use of pointers. First, 5The name convention that we have used is that a type called
‘foo ’ is available in Scheme as &do ' binding.

65

Primitive Type

Usage

_void

Jint8 , ...,.int64

_uint8 ...,
_uint64

_byte , _word , _int ,
_uint

_long , _ulong

fixint , _ufixint
fixnum , _ufixnum

_float , _double

_bool

_bytes
_string/ucs-4
_string/utf-16
_path , _symbol

_pointer

_scheme

1

returns a Schemid value when used as an
output type

integer types in various sizes
non-negative integers
aliases foruint8 , _uintl6 , _int32 , and

_uint32 respectively

aliases for 32- or 64-bit integers, depending g
the meaning oflbng ’ for the current platform

versions of integersrnt andlong resp.) that
assume fitting into an immediate Scheme fixn
integer

floating point numbers (inexacts)

booleans (as C integers)

byte-strings (plairthar strings and memory
blocks represented as byte-strings)

Unicode string types

path strings and symbol names as strings
(interned when used as an output type)

a ‘cpointer’ object encapsulating a pointer val
and an optional tagif is used for a NULL
pointer

a Scheme_Object* pointer, for any Scheme

=]

ue

boxed value, this will be its actual pointer

Table 1. Primitive types

Users can create new types in two flavors:

e User-defined types are made by theakectype ' primitive,
and are analogous to primitive types. To create such a type a(callouts) and Scheme procedures to C (callbacks) respectively. At
programmer has to:

1. Choose the s& of Scheme objects that the new type

ferent marshaling schemes for each of these cases).

3.1.2 Pointers

As mentioned above, pointers are an integral part of our interface,
exposed as useful Scheme objects. A Scheme pointer object en-
capsulates the actual pointer value (adding an extra level of indirec-
tion), and a ‘tag’ which is an arbitrary Scheme object. C functional-
ity is limited to a usable minimum: allocating memory blocks (us-
ing various allocator functions — either through the garbage collec-
tor, or rawmalloc), referencing and setting pointed values (given a
type), and pointer equality.

Again, functionality implemented by the C level is kept to a min-
imum. For example, the tag values that are attached to pointers
can be used to enforce a type for referencing and setting a pointed
value, but such a design can be better implemented and enforced in
Scheme, so these tags &yroredby the C part of the interface.

3.1.3 Interfacing Foreign Functionality

So far, all C-level functionality is useful by itself, extending Scheme
so it can handle machine-level raw data. The final piece of the C
part of our interface is the one that actually deals with foreign li-
braries. First, there is functionality for opening a dynamic library
and pulling out objects. These objects can be used as pointer ob-
jects, soitis possible to both reference and change their values (use-
ful for libraries that contain user-modifiable customization hooks).

Dealing with function values is separated into function calls that
we can do (“callouts™) and calls from foreign code to our func-
tions (“callbacks”). This is wher#bffi makes the implementa-
tion much easier. Two Scheme-accessible procedfiicas, and
fficallback , are in charge of converting C functions to Scheme

the Scheme level, these procedures are used by acpewedure
type constructor, which provides a symmetric ‘marshaling’ inter-

should handle. This can be any set — combination of face for both ways of this conversion, so users are not aware of any
several Scheme types, subsets, or a few random values.differences in the underlying translation mechanism.

2. Choose an existing C type as a base type. This type

handles some s& of Scheme objects.

3. Write two procedures: one that translateSamalue to
S and one that goes the other way.

4. Apply ‘makectype 'on T and the two translators.

When the new C type is used to send values to foreign code many of these procedures are re-exportedigign
(function arguments, or setting pointers), the first translator

is used and processing continues withand when receiving

values from foreign code (return values or pointer references),

Bindings that are implemented by the C part of our implementation
and made available through th#&sforeign ' module are listed in
Table 2. This, together with Table 1, is a complete summary of the
C-level implementation. Again#%foreign ' is not intended for
use outside of ourfdreign ' implementation (described next), but

3.1.4 Garbage Collection Issues

T is used first and the second translator is then applied. The There are some important memory management issues that should

implementation of user types does not invaliiséi

, whic

only sees primitive types.

e New struct types are created from a list of existing types us-
" primitive. This is mainly imple-
since it describes a new low-level data type

with new size and alignment information. On the Scheme side
the resulting primitive type is similar to_aointer
it is used to send or receive values, the contents of the pointer

ing the makecstructtype
mented bylibffi

is copied rather than the pointer itself.

h

, butwhen

be mentioned at this point: a moving garbage collection, such as
the one used by the precise PLT Scheme versimscheme3m)
complicates things considerably when foreign code interacts with
objects on the (GC-visible) Scheme heap. There are certain objects
that should not move in memory, most notably, the callable func-
tion pointers generated bipffi to implement C closures must
not move, so we need to take extra care in allocating these using
plain malloc , where the garbage collector does not touch them.
Callbacks are especially fragile in this aspect: when C code calls
Scheme code the garbage collector might be triggered and any GC-

No additional functionality is implemented at the C level for these Vvisible pointers that the C function might use will inevitably be in-
types except trivial accessors and size/alignment information. Ad- validated. This problem does not have an easy solution — either
ditional abstraction layers like enumerations and struct constructorsmemory is managed by a non-moving collector possibly manag-
and deconstructors are implemented in Scheme. As a result, weing different memory regions using different collectors (this solu-
don’t have to commit to a specific marshaling scheme at the binary tion is impossible with PLT Scheme'’s precise GC), or doing manual
level (in fact, the Scheme part of the interface implements two dif- management. The C implementation takes care of this when deal-

66

Primitive Bindings Usage Defined Type Usage

ffiib , ffi-lib? open a foreign library and related _string/utf-8 ,

ffi-lib-name functionality _string/locale , | various C strings, using different encoding

fii-obj , ffi-obj? get a foreign object pointer from -string/latin-1

ffi-obj-lib , ffi-obj-name a library and related functionality uses one of the existing string types, depending
make-ctype | _string on the value of theefault _stringtype
make-cstruct-type , ctype? parameter;#f ' is used as &ULL value

ctype-basetype Handling C type descriptor fil similar to the_path type, except that path names
ctype-scheme->c objects (see Section 3.1.1) -he are resolved usingxpandpath

ctype-c->scheme , strina/eof similar to_string , but in case off (NULL), an
ctype-sueof ,'ctype-ahgnof -sting end-of-file object is returned

cpointer? , cpointer-tag Handling C pointer objects (see| these are actually functions that consume a list

set-cpointer-tag! , ptr-ref

ptrset! , ptr-equal? of symbols, and create an integer-mapping type

Section 3.2.2)
that translates a single symboéifum) or a list

_enum, _bitmask

Interface for the standard C of symbols (bitmask) to an integer
malloc , end-stubborn-change , |malloc and other allocators that - -
free , make-sized-byte-string , | are used in MzScheme, and Table 3. Simple types defined by the Scheme module
register-finalizer related memory management
functions
creating a call-out object (a ditional functionality using the built-in module, varying from new
Scheme procedure that calls a types, through an IDL, to memory management issues.

foreign function when applied)
from a C pointer and creating

ffi-call , ffi-callback , callbacks (objects that can be
ffi-callback? passed onto foreign functions as
function pointers) from Scheme
procedures, both functions accept

3.2.1 Additional Types

The Scheme module, like the C part, revolves mainly around types.
First, there are several simple types that are implemented in the

an input type list and an output Scheme mod_ule, _summqrized in Table 3. Adding these types is sim-
type ple, as described in Section 3.1.1, for example, fiee type is in-
- - " tended to make it easy to interact with foreign functions that expect
Table 2. Primitive *#%foreign ' bindings a file name — making it possible to use names likedfbar "

The definition in foreign ’ involves usingexpandpath when go-

ing with libffi objects, but nothing else. If a movable pointer is g%grgg]esr%?me to C, and leaving the path as is when going from

passed on to a C function which can use Scheme callbacks or oth-

erwise retain it, then it is the responsibility of the Scheme level to (define _file

deal with copying these values to non-movable memory (using the (make-ctype ; create a new type,
system'’s rawmalloc which is accessible in Scheme). The Scheme _path ; based on _path

part of our interface simplifies some of these issues, but there is expand-path ; expand-path when sent out
no general solution when (potentially mishehaved) foreign code is #)) ; Teceive: same as _path

involved, since such code is ignorant of any memory management

issues for objects it does not “own”. Since this part of the implementation is in Scheme, we can now

develop better solutions than we could if we used only C. For ex-
A related issue is dealing with pointers that can be contained ample, note thaenumand_bitmask are not type objects, béiinc-

in other objects. The Scheme-visibledlloc ’ function uses tionsthat create type objects — they ayge constructors Also,
atomic allocation by default except for allocatingminter - or note that there are multiple string types, since our system is in-
a _scheme-based type User-creatatuct types are, however' tegrated into the development version of PLT Scheme which uses
problematic because they can hold both pointers and other valuesUnicode for its strings — thestring type is therefore an ‘identi-
Our implementation uses only atomic memory blocks for these, fier syntax’ that expands into a usage of thefault _stringtype ~°
which works as long as there are no GC-able pointessint s, parameter. Both of these would take a much heavier implementa-
which so far was not a problem. We have a plan for dealing with tion if they were implemented in C.

such pointers, in case a solution is needed: expand new struct types

with a map of contained GC-able pointer offsets. In any case, users3.2.2 Pointer Types

should be aware of the fact that memory blocks are moved and use

raw-malloc ed pointers as necessary when callbacks or library ref- Section 3.1.2 mentions that Scheme pointer objects have an arbi-

erences are involved. trary ‘tag’ value associated with them, and that these tags are ig-
nored by the C part of the interface. THeréign ' module pro-
3.2 The foreign Module: Scheme-Level Inter- vides a_cpointer function that, when given some Scheme value,
face constructs a newpointer -based type which tags pointer objects
when they arrive from the foreign side, and raises an error when
Atthe Scheme level, we have added a n@iy “foreign.ss") ’ passing a pointer with the wrong (neg?) tag from Scheme. This

module to MzLib. Scheme programmers should use this module functionality might be extended in the future to use the tag value in
which complements the built-i#%foreign ’ module. The purpose some more meaningful way, for example, make it be another type
of this module is to re-export some useful parts #fforeign ’ object and make pointer dereferencing use it instead of taking a
with an additional degree of sanity and convenience. For example,type argument, or use it to imitate inheritance where a pointer can
‘getffiobj ' is a convenient procedure that combinéii ' to be used in places where an ancestor pointer kind is expected. In ad-
open a library, ffiobj ' to retrieve a pointer, ancptrref ' to con- dition to the_cpointer function, there is aefinecpointertype

vert it into a Scheme value. In addition, it builds a layer of ad- syntax:

67

(-define-cpointer-type (-id) Values of this new type are kept as a pointer object that refer-

[{type-or#f) (sem—c) (c—scm)]) ences the memory block holding the binary data. Again, this

which defines such a type usifigid)" as a tag, together with a simplifies interfaces: there is no overhead involved as we are

‘(id)?’ predicate and a(id)-tag ’ binding for the tag value. dealing with the raw data. A simple example of using such a
struct type follows:

The optional type and translation arguments can be used to spec-
ify the base type in case it is ngtointer ~ (for example, if it is a
struct type), and translation procedures. Such arguments are also

> (define-cstruct _foo
((x _int) (y _double)))

. - > (define x (make-foo 1 2.3))
available for_cpointer . > (f00? X)
#
3.2.3 Vector Types > (list (foo-x x) (foo-y X))
. . - . . 123
Exposing C functionality in Scheme makes it possible to use ar- > (set-foo-y! x 4.5)

bitrary blocks of memory to hold data. Allocating such a block is
even simpler with the providdit->chlock andcblock->list , . .
both implemented in Scheme, but the result is just a bare pointer ob-3-2.5 Simple Function Types
ject. Itis therefore useful to encapsulate such a memory block with
the type of objects it uses and the number of objects contained in
it. Using this we benefit from no per-item storage overhead as well
as making some foreign interfaces easier to deal with, and at the
same time ensure that there are no violation of the vector bounds
Interacting with these vectors is intentionally similar to using plain
Scheme vectors:

Finally, the core functionality that allows interactions with foreign
libraries is enabled by theprocedure type constructor. This con-
structor creates a function type when given a list of input types and
an output type. Like all other C type objects, the resulting function
‘type has two translation procedures: one going from C to Scheme
and one going back. For these function types, the first translator
generates aallout object that can be used as a new Scheme prim-

> (define v (make-cvector _int 10)) itive, and the second generates a callback object that can be sent
> (cvector-length v) to C code allowing it to invoke a Scheme procedure. This inter-
10 nal function is implemented via the primitivéiicall ' and ‘ffi-

> (cvector-set! v 5 55) callback ' functions (see Table 2), it's definition is (rougfly

> (cvector-set! v 15 55)

cvector-ref: bad index 15 for cvector bounds of 0..9 (define (_cprocedure itypes otype)

> (cvector-ref v 5) (make-ctype _pointer

55 (lambda (x) (ffi-callback x itypes otype))

(lambda (x) (ffi-call x itypes otype))))

These vectors can be used as inputs to foreign functions via the
_cvector type. This means that from the user’s point of view, a simple type spec-

! . , ification like ‘(_cprocedure (list dnt _int) _nt) ’ can be
SRFI 4 [6] defines similar structures, except that there are dn‘fergnt used as either an input or an output type, and it can properly nest
Scheme types (therefore different function names) for each kind (neqgative function type occurrences generate callbacks and positive

of vector, making it limited to numeric vectors. Ouoreign ' gccyrrences generate callouts). For example, the following con-
interface adds a complete re-implementation of SRFI 4, which will trived higher-order C function:

replace the C-based module that is currently a part of PLT Scheme

int foo_ho_ho_func(int x, int(*(*f)(int))(int)) {
3.2.4 Struct Types return (f(x+1))(x-1);

The C part of our implementation provides limited support for
defining struct types: we get makecstructtype ' function which can be used (interactively!) in Scheme in a straightforward way:
constructs a new kind of primitive type given a list of existing types. —
This new type can be used with Scheme pointer objects, which > ((get-ffi-obj "foo_ho_ho_func" "foo.so"
will cause copying the structureontentsrather than the pointer (_cprocedure

value when marshaling data. Accessing these objects is left for (st _int

the Scheme side, which uses the information given byctype- (—c(ﬁ)igce?nlge
sizeof and thectypealignof ~ functions to compute the offsets (_cprocedure (st _int) _int)))
into the contained values. _int) T
3
This functionality is sufficient for theféreign ' module to make C (lambda (x) (lambda (y) (+ y (* x X))
structs accessible from Scheme. Two interfaces are provided: 18
1. _list-struct is a type constructor: given a list of type ob-

jects, it constructs a matching C struct type, and wraps the 3.2.6 Complex Function Types: IDL Features

result in a yet another type that translates values contained in

such a C struct value to and from a Scheme list of values. Us- The _cprocedure can generate simple interfaces, but it is insuffi-
ing this type is simple, but it involves extra allocations which cient in cases where the foreign function needs an additional layer

is an extra overhead some users will want to avoid. of interface when arguments and/or the return value on the Scheme
2. definecstruct is a new syntax, similar to PLT Scheme’s Side don’t match those of the foreign side. A common example of
‘definestruct ~ ’, except that slots have an associated type.

"The actual implementation accepts another optional argument
6The current implementation does not deal with the external that can be used to tweak the resulting primitive procedure. This is
syntax specified in SRFI 4. described in the following section.

68

this is a foreign function that expects a pointer and a size indica-

It is obvious that this code is hard to read — for example, inspect-

tor, which correspond to a single Scheme object that encapsulatesng the types reveals that there is a bug in this éode addition,

both. For example, the standard€ad ’ function expects a string
buffer and its size in two input arguments. A simpiprocedure -

such procedures will often be higher order for customization, mak-
ing things even worse. Another drawback of this approach is the

generated interface inevitably exposes the additional argument, sonumber of procedure applications that are involved in each call:

the interface programmer needs to wrap it by additional glue code.
For this, cprocedure has an extra optional argument that is ex-
pected to be a procedure that wraps the resulting foreign fufction

(define c-read
(get-ffi-obj "read" "libc.s0.6"
(_cprocedure (list _int _string _int) _int
(lambda (prim)
(lambda (fd buf)
(prim fd buf (string-length buf)))))))

Another common example is the use of ‘output pointers’ by foreign
code to return multiple values. Again, a naiwprocedure inter-
face will be awkward to use from Scheme code, and the interface

programmer needs to use a wrapper that makes the foreign function

more Scheme-friendly:

(define c-modf
(get-ffi-obj "modf" "libc.s0.6"

(_cprocedure (list _double _pointer) _double
(lambda (prim)
(lambda (d)

(let* ([p (malloc _double)]
[r (prim d p)])
(values (ptr-ref p _double) n))))))

More forms of wrappers are needed in other situations: additional
argument dependencies, input- and output-pointers, different allo-
cation strategies, implicit ‘self’ pointers, etc. In general, we need
a way to combine arbitrary wrappers that operate on arbitrary ar-

guments. Such wrappers cannot be implemented as new C types;
since such types can add layers of processing on each value inde

pendently, rather than the required interaction among multiple ar-

guments and output values. What we need here is some form of

an interface description language (IDL). The requirements for an
appropriate IDL are:

e it should be easy to write and easy to read,

[]
two demonstrated above as well as others,

it should not lead to an expensive performance hit,
it should be easy to extend when facing new situations.

any time overhead involved in foreign calls might be critical, and
we don’t want programmers to move to inferior tools because of it.

The approach that our system takes uses Scheme’s syntax abstrac-
tion capabilities instead. We define a new type combinatan,

which is actually a syntax transformer. Usagesfaf generate the
appropriate wrapper code, and usprocedure with it to create

the function type.

Simple usages aofun are similar to_cprocedure except that the
types need not be put in a list, and an infix * marker separates
the input types from the output type. For example, using for
the higher-order C example from Section 3.2.5:

> ((get-ffi-obj “foo_ho_ho_func" "foo.so"
((fun _int ((fun _int -> ((fun _int -> _int))
-> _int)
3
(lambda (x) (lambda (y) (+ y (* x X))

18

In its simple form, thefun type constructor has this syntax:

(fun (f-type* -> (f-type)
which covers simple function interfaces in a slightly more conve-
nient form thancpointer . Inits full form, _fun is extended to deal
with common argument interactions like most IDLs and more —
rather than fighting with a limited preprocessor or re-implementing
a C parser, we have a real (meta) language to help us. Using syn-
tactic abstractions in Scheme, we achieve a powerful IDL through
fun , one that can be extended to handle all possible situations.

The full form of the_fun syntax has two optional parts, and each
(f-type subform can have an optional identifier and/or expression:

(fun [(args) = | (f-type™ -> (f-type [-> (expn])
(f-type = (t-expr) | ([{id) : | (t-expn [= (expn])
(t-expn ::= expressions that evaluate to a type value

it should be rich enough to express interactions such as the The sequence df-types in their full form behave like a sequence

of ‘let* ’-bindings, each with an associated type and a value (both
plain Scheme expressions). As witht* ’, value expression can
refer to previous identifiers for their values. Omitting an identifier
makes the corresponding value inaccessible for subsequent expres-

One way that we have tried to tackle this issue is by providing the sjons; omitting a value expression means that the resulting wrapper

necessary abstractions as a collection of procedures, each performfunction will expect a corresponding argument. For example, in this
ing a single task, and have interfaces use combinators to build thedefinition:

required argument interactions. This approach has a major draw-

back: it leads to complex expressions which are hard to write and

harder to read. Using this approach, code that converts a Scheme
string argument to buffer-size and pointer arguments might use a

‘string+len ’ function together with combinators that arrange to
swap the arguments, for example:

(define foo
(get-ffi-obj "foo" "foo.s0"
(_cprocedure (list _int _string) _int
(compose prim:1+2->2+1
(prim:1->1+2 string+len)))))

8Actually, our interface is part of the new version of PLT
Scheme, which has a neyte-stringtype for raw (non-Unicode)

character sequences. We use strings in the following examples for

simplicity.

69

(define c-read
(get-ffi-obj “read" "libc.s0.6"
(fun _int
(buf : _string)
(Uint = (string-length buf))
-> _int)))

there are three arguments that are passed on to the foreign function:

e The first uses the short form: it has no value so it will receive
the first value passed on tofead ’, and it has no name so
its value can not be used in following expressions.

e The second argument has no value too, making it get the sec-

9A type checker will help avoiding such errors, but will not
make things easier to read and write.

ond ‘c-read ' argument, and its value is bound tauf . Custom Type |Usage _ _

e The third argument has a value expression so the value that is | P nput, output, or input/output pointers
passed on to the foreign function is always the length of the similar to an input/outputptr , but modifies the
second (string) argument. Scheme box contents

_box (PLT Scheme has a mutable box type. Note that we don't
‘c-read ' is therefore a Scheme procedure that expects two argu- need to associate Scheme boxes with ‘shadow’ pointers:
ments and returns an integer, by arranging for properly calling the either copy values, or use-pointer instead of a box)
foreign ‘read . _list , _vector |marshal lists and vectors as C pointers

_bytes uses Scheme byte-strings (raw, non-Unicode strings)

In some rare cases, an interface needs to have better control of the
wrapper’s argument list — which is the purpose of the optional |_?
‘(arg9 :: ' prefix: it specifies the arguments to the resulting wrap-
per function. For example, iféad ' were to expect the buffer size Table 4. Simple types defined by the Scheme module
first, we would use thisfun type:

a special non-type intended for saving intermediate
interface results

(fun (fd buf) = are themselves syntaxes — such types can install pieces of code
(fd - _int) that are used before and after the foreign call, possibly modifying
(int = (string-length buf)) the corresponding value. In the case of output pointers we want to

(buf : _string)

> in allocate some memory before the foreign call and dereference it af-

terward, a task that is achieved by tlpr custom type.ptr is a
Note that identifiers are important here, as they connect the foreign Syntax with usages that has the following form:

inputs with the wrapper’s inputs. THargs) part can also be used (-ptr (mode (type-expy)
to specify normal Scheme argument lists, including optional argu- (modé =i |o|io
ments. T

The (modé specifies an input, output, or input/output pointer. In
A second *>" marker denotes a result expression different than the the ‘modf’ case, we use an output pointer:
one that the foreign function returned. This expression can use any
bound values and arguments, as well as the foreign result value (if ~ (define c-modf
given an identifier). For example, theddf’ interface given above (get-fi-obj "modf” "libc.s0.6"

is better written with.fun as: (Lfun _double (p : (ptr o _double))
-> (r : _double) -> (values p 1))

(define c-modf

(get-ffi-obj "modf" "libc.s0.6" The code that is generated by thign syntax is similar to the pre-
(fun _double (p : _pointer = (malloc _double)) vious code,
-> (r : _double)
-> (values (ptr-ref p _double) 1)) (lambda (tmp15)
(let* ((p (malloc _double))
The fact that we can insert any Scheme expression for the return (r (ffi tmpl5 p))
value makes it easy to change such definitions so they use alterna- (p (ptr-ref p _double)))

tive ways for assembling the return values, for example, changing (values p 1))

‘values ’'to ‘cons’inthe above. If this was implemented in C, such
changes would require more work.

but notice that we don’t need to explicitly allocate a double or deref-
erence the pointer.

The similarity between thdun syntax andlet* ’is notincidental:
_fun assembles a wrapper function that contains a singte *
expression, which evaluates the various expressions, binding the
results to specified identifiers. For example, the usagéunf in

the last example expands to: As mentioned above, Custom types are implemented as syntaxes.
_fun tries to expand each type expression it encounters, and if an
expansion is identified as a custom type, then it has certain forms

The custom function types that are provided by tioeeign * are
listed in Table 4. Further details on these types can be found in our
user manual.

(_cprocedure (list _double _pointer) _double

(Iaw;’,i%dgn)(tmpﬁ) that contain the relevant pieces of code. A custom type expansion is
(let* ((p (malloc _double)) a‘((key) (val) ..) ’sequence where all of they;)s are from a
(r (ffi tmp15 p))) short list of known keys. Each key interacts with generated wrapper
(values (ptr-ref p _double) r))))) functions in a different way, which affects how its corresponding

. L -) ~argument is treated:
This satisfies the efficiency requirement: only one extra function

call is wrapped around the foreign call. ype: specifies the foreign type to be used (can be used to

make this not participate in the foreign call).

expr: specifies an expression to be used for arguments of this
type, removing it from wrapper arguments.

The _fun facility handles some common cases where we need to bind: specifies a name that is bound to the original argument if it

3.2.7 Additional IDL Features: Custom Function Types

bridge a gap between the foreign function and Scheme code that is required later (e.g.box needs to refer to the original box).
uses it, but there are additional cases that are not addressed. Fotst-arg: specifies a name that can be used to refer to the first ar-
example, therhodf’ interface code above represents such a com- gument of the foreign call (good for common cases where the
mon situation — output pointers that are used by foreign code to first argument has a special meaning, e.g., for method calls).
return multiple values. We therefore extend thien syntax fur- prev-arg: similar tolst-arg: , but refers to the previous argu-
ther, by making it interact with special ‘custom function types’ that ment.

70

pre: a pre-foreign code chunk that is used to change the argu-
ment’s value.
post: a similar post-foreign code chunk.

(define-syntax defcvar
(syntax-rules ()
[C var lib type)
(define-syntax var
(syntax-id-rules (set!)

[(set! varl vall)
(set-ffi-obj! 'var lib type vall)]
[(var . xs)
((get-ffi-obj 'var lib type) . xs)]
[var (get-ffi-obj 'var lib type))))])

The following is the implementation of thetr custom type from
the foreign ' module. It is provided to roughly demonstrate how
this is done; again, complete details are given in the user manual.

(define-syntax _ptr
(syntax-rules (i o io)

iy
;;» input: malloc a pointer, set its value from the argument and verify that it is working properly:
(type: _pointer
pre: (x => (let ([p (malloc t)]) (ptr-set! p t x) p)))] > (defovar z "x.s0" _int)
[Co - o -
;» output: malloc a pointer on entry, dereference on exit
(type: _pointer 0
pre: (malloc t) > (set! z 123)
post: (x => (ptr-ref x t)))] >z
[Cio 123
;» input/output: like output, but set its contents on entry > ((get-ffi-obj "getz" "x.s0" (_fun -> _int)))
(type: _pointer 123 -

pre: (x => (let ([p (malloc t)]) (ptr-set! p t x) p))
post: (x => (ptr-ref x 1)))]))

where the C code that is compiled intaso " is:

All of the special custom types provided kigreign ' are defined

this way. nt z = 0,

int getz() { return z; }

To conclude: oucfun satisfies all requirements mentioned above
for a good IDL: it is easy to read and write, it can express all wrap- Using Types

per interactions that other IDLs can express and more, it is effi- C tvpes in our svstem are somewhat liahter than expected: there
cient, and extensible by the ability to add new custom types that . typ y 9 P :

handle new kinds of processing. As expected from a syntax trans-'S only a loose _correlation between_these types anc_i Scheme object
former that performs some substantial work, it carries some con- types. A type in our context can simply mean a different way of

ceptual overhead, but we believe that overall it is better than the C ?:f&sgaelg% nSghze T?s\é?rlﬁels g)/(girfcf)énrecr:l't];3; eﬁgmgﬁs’ﬁﬂa&ﬁ Mztégﬁeme
processing alternatives since Scheme is superior in its syntactical . e Pl ay
abstraction capabilities. path objects which are normally used wigiath . No C-level sup-

port is needed for such cases: there are no new binary tags in-
volved, and no new object representations at the implementation
level, meaning that it is extremely cheap to create such type descrip-
tors. A common usage of types is therefore as a simple mechanism
to add hook on the translation process.

4 Usage Examples

With the implementation of our system, we provide a few (mostly

Linux) library interfaces. This was used to test the implementation,

motivating the overall design. We now describe a few examples of For example, the ImageMagick library specifiesMagickWand’

using our system, all based on these interface implementations. ype, which is always being manipulated as MagickWand* ’
pointer. There are functions that return a pointer to a newly cre-

Syntactic Abstractions ated MagickWand’ object, and these objects must be destroyed

C provides some (limited) degree of syntactic abstraction, whereasWith the ‘DestroyMagickWand * function. To do this automati-

Scheme truly shines in this area. When a complete library interface cally, we define aMagickWand type using_pointer ~and provid-

is desired (rather than pulling out a few useful functions), repetition ing & new translation when going from C to Scheme, one that uses

is common. Writing interfaces in Scheme makes such problems al- ‘registerfinalizer "to make the GC useDestroyMagickWand

most non-existent — for example, our ImageMagick interface uses When reclaiming the pointer objéct

a simple macro:

(define _MagickWand
(make-ctype _pointer

(define-syntax defmagick

(syntax-rules (:)

#f ; Scheme->C translation is the same as _cpointer
(lambda (ptr)

[Cid:x ..) .
(define id @pr
(get-ffi-obj "id libwand (fun x ..)))) (begin (register-finalizer ptr destructor) ptr)

(error '_MagickWand "got a NULL pointer")))))

to make interface definitions easier. We can make this even better with a ngwinter type which uses

Defining new syntaxes can help in other, less common situations. &n appropriate tag to identify these pointers and make sure that we
For example, KSM [4] haseang:sym form that exposes aforeign ~ don't confuse pointers to internal ImageMagick objects of different
library variable as a Scheme binding. Using PLT Scheme macros, types. The following definition usesifinecpointertype * (see

we can achieve this functionality in Scheme using a macro that de- Section 3.2.2) to create a type that tags all pointers when they are
fines the C ‘variable’ as a madi®

word placeholder that is ignored).

10From the MzScheme [9, Section 12.1] manual: Tyatax- 11This assumes that there is no way to get a second pointer object
idrules " form has the same syntax agyntaxrules ’, except that that refers to the sam#lagickWand ’ object, so care should be taken
each pattern is used in its entirety (instead of starting with a key- with functions that can create such aliases.

71

moved from the foreign side to Scheme, and check the tag when

sending a Scheme pointer object out to foreign code.

(define-cpointer-type _MagickWand #f #f 12

(lambda (ptr)

(define-syntax _status
(syntax-id-rules (_status)

[_status
(type: _bool
Ist-arg: 1st

post: (r => (unless r

(if ptr
(raise-wand-exception 1st))))]))

(begin (register-finalizer ptr destructor) ptr)
(error '_MagickWand "got a NULL pointer"))))

A different example of using a new type comes from our TCL in-
terface: thelcl _Eval function returns a status integer, indicating a
possible error. In our implementation, we defaveltcl as:

Memory Management

Usually, there are important aspects of the library interface that are
not fully specified. Memory management issues often fall under
this category. For example, a naive interface might behave in a
surprising way:

(define eval-tcl
(get-ffi-obj "Tcl_Eval" libtcl
(Lfun (interp : _interp = (current-interp))
(expr : _string)
-> _tclret)))

> (define crypt
(get-ffi-obj “crypt" "libcrypt"
(_fun _string _string -> _string)))

using the following.tclret definition: > (define a (Crypt "fool" "23")
’ > a
(de(flnek_tclret . ok) "23 KLNfMwUWO0Q"
make-ctype (_enum '(ok error return ... o P
(lambda (x) (error "tclret: only for returning")) : édeflne b (erypt food” "56%)
(ambda (9 "568.5HohJYCOg"
(when (eq? x 'error) >a ; a is modified!
(error 'tel (get-string-result '568 5HohJYCOg" '
(current-interp)))) > (string-set! a 0 #X) ; verify that a and b
X)) > (st a b) ; are the same string
. . . . ("X68.5HohJYCOg" "X68.5HohJYCOg")
which effectively translates a TCL error into a Scheme exception. > (eq? a b) ©.but not quite the same
#

Note that the TCL interface uses a Scheme parameteent-

interp ' as the value of the first argument t6CL_Eval *. We can
make this implicit by defining a new custom type syntax, using the
‘expr: ’ keyword:

Using a simple SWIG interface, made using the C prototype decla-
ration for ‘crypt "

extern char *crypt(const char *key, const char *salt);

(define-syntax _cur-interp
(syntax-id-rules ()
[(type: _interp expr: (current-interp))]))
(define eval-tcl
(get-ffi-obj "Tcl_Eval" libtcl
(_fun _cur-interp (expr :

suffers from this problem too. The reason for this strange behav-
ior is that both our interface implementation and SWIG's generated
code use MzScheme'make_string _without _copying ’function,
which simply wraps an existing C string in a Scheme string object.
The standard Unigrypt function returns a pointer to its own static
string, making the above interaction create two Scheme string ob-
. jects that point to this static buffer — but the Scheme objects are
Using Custom Types JstiII differeﬁt. This can be dangerous as it breaks an implerrj1entation
Custom types are intended to be used in situations where simpleassumption, so some solution is required. Changing the implemen-
independent processing of each argument is insufficient. For exam-tation to usescheme _make_string * would not be acceptable in the
ple, many functions in the ImageMagick interface return a ‘status’ general case since it leads to an expensive overhead. In addition,
integer that indicates if there was an error. If an error has occurred, there are other foreign functions (e.gefcwd) that can allocate a

the main object involved in the function invocation should be used return string, and blindly copying it will cause a memory leak (the
to retrieve the error message and severity. One way to deal with gllocated string is not in GC-controlled memory).

this situation is to save the object in a place accessible right af-

ter the foreign call, like a parameter. This is essentially what the Using our system simplifies such a solution since we don't have to
TCL interface does, wherdclret uses a parameter to get the er- break out of Scheme, we can simply use a new§pe

ror message. The ImageMagick interface is different — instead of
a single implicit context parameter, it fits more an object-oriented
style, where each method call happens in its object’s context.

_string) -> _tclret)))

(define _string/copy
(make-ctype _string #f
(lambda (x) (string-append x #"))))

As a result, a good interface must be able to provide a relation be-
tween different arguments, namely the result value (to be checked
for an error) and the first argument (providing the current object
context). This is done using tHist-arg: keyword of a custom
type which specifies an identifier that will be bound to the first ar-
gument:

We can solve numerous problems in a similar way, for example,
using semaphores to avoid problems with the single crypt buffer, or
creating a newstring/free that copies a string and freeing the
previous GC-invisible one.

13Note that this is not relevant now, since our system is part of
12yse_cpointer as a base type, no extra translation when going the Unicode-enabled MzScheme, so Scheme strings are stored in
to from Scheme to C, and register the destructor on the way back. Unicode format, meaning that they are always copied.

72

5 Related Work func. | Glue Type CPU | Real| GC

crypt SWIG 38% | 4% | -34%
The first and foremost advantage that our foreign interface has Handwritten C glue| 53% | 49% 0%
over existing implementations, is the fact that it is truly dynamic. sgadd | SWIG 55% | 57% 0%
This means that functionality that traditionally is available only via Handwritten C glue| 60% | 61% 0%

C code is available to Scheme programmers, which makes for a
compiler- and architecture-independent system. Furthermore, the
dynamic aspect of the system allows for playing with foreign exten-
sions dynamically, modifying and debugging the interface at run-
timel*. Exploratory programming is therefore possible, hence the
overall development cycle becomes much lighter.

Table 5. Comparison of overhead time

A second advantage comes from the fact that we use Scheme. Usin%ur
a language with robust syntactical abstractions makes it possible
to provide an IDL-like interface for interface programmers, with
features that can go beyond capabilities of conventional IDLs [18,
16]. Having syntactic abstractions in the language makes it possible|t could be argued that a simpler, more user friendly system comes
for users to extend their own code using new constructs, including at 4 price of expensive overhead, leading to an inherent sacrifice of
ones that are unique to a single library, in contrast to fixed IDLs performance. Testing out two simple benchmarks, we found that
preprocessor. compiled interface that was generated by SWIG, which itself has
an almost identical overhead to hand-written glue code.

‘foreign ’ library makes it possible for a Scheme developer to
quickly open up a C library, pull out a few procedure objects and
start an interactive development session.

Dynamic interfaces are not as common as static interfaces. Exist-
ing dynamic systems, for example the Allegro CL foreign function our results are summarized in Table 5. Two functions were used for
interface [10] and Python’s ctype module, do not provide the low- hjs analysis — the first is therypt function taken from the stan-
level C-substitute features that we do. Urban's FFI survey [17], dard Unixlibcrypt : consuming two strings and producing an en-
although a little out-dated, provides an excellent overview on ex- crypted string result. The second is a simple C functigadd , that
isting systems and implementation issues. It is interesting to note performs an addition of two integer squares. We measured a mil-
an SML interface system [2] as another, somewhat similar system jion executions otrypt and 30 million executions afgadd , per-

to ours. Similar to our design, the main ideadata-level inter- forming each test for 16 rounds beginning with a fresh MzScheme
IOPerab”'tyéS]t— mak:ng réﬂ“f/fv c dataf ave}llablet totthe h|gth-level process, discarding the 6 extreme timings and averaging the other
anguage, but our system differs in a few important aspects: imepr— TiMeray

guag Yy P P 10. The percentages are computed AEL—Timeae — 1 where

e Our design is built around the idea of enabling arbitrary C- Timep 7 is the averaged running time of our interfageneswgis
like unsafe code — whereas Blume’s system uses SML's type the average running time of SWIG, afiinezawcis that of an im-
system to enhance interaction with foreign code. plementation of comparable repetition loops in C. The same com-

e Our system goes one step further in giving users more power. Putation was used to compare our system against handwritten C
“If you can do it in C, then we will let you do it in Scheme” glue code.

\r/?éhlg ;t;inusiotrr?gmg-level operations are useful enough that As Taple 5 shows, our system is gbout 1.5 times slower then SWIG,
T) and, in most cases the handwritten glue code. The biggest per-

e Blume’s system is limited to SML's syntactic framework, formance hit is in the simple arithmetic function, where the actual
where we use Scheme’s capabilities for creating IDL-like syn- foreign code does much less than the interface code. Situations like
tax. this should rarely occur since the usual case of using a foreign li-

GreenCard [14], G-Wrap [3], and SWIG [1]. There are Scheme t0 achieve in Scheme.
systems that fall under this category too by providing support for

combining Scheme and C code, for example, Gambit{6] and While issues of timing and performance are important, aspects such

: . as implementation complexity and ease of use must also be consid-
KSM [4]. Most notably, SRFI 50 [15] attempts to standardize this ered. Comparing our system to SWIG and interfaces that use an

approach, possibly making it possible for different Scheme imple- IDL, it becomes clear that our implementation is better in at least

mentations to share C code. These systems make it possible to write . .
Scheme code that is converted to C code, so it is easy to write such>"€ aspect. One advantage that our system provides over the static

‘ , ; - . -~ “"approaches is the ability to specify additional functionality using
Scheme’ code that calls C functions as if they were plain function : ; - h
calls. Some of these systems lack a code gen)ération Fc):omponent thateW user-defined types that involve arbitrary translation code. The

h . . ain point here is that such translations are written in the high-level
IS de“VEd by an IDL or some equivalent, but they can all be seen asIanguage itself rather than dealing with the intricacies of the C im-
static code generators.

plementation.

We now focus on SWIG as a popular system that can be used for
multiple high-level languages. A simple translation using SWIG
requires the user to compile (through the SWIG parser) a C header.
file with a SWIG interface file, resulting in C code that is then, yet
again, compiled using a C compiler, to produce a C module that
is finally imported into Scheme. In contrast to the static approach

In addition, regardless of interface design and syntactical complex-
ity, our implementation is better because the interfacing mechanism
itself is in a high order language: making it possible to include ar-
bitrary Scheme code as part of the foreign call specification. This is
further enhanced by the fact that we use Scheme since it is possible
' to create new syntactic abstractions to deal with new requirements.

Either with SWIG interface files or with an IDL, the interface de-
14As long as no fatal errors occur. veloper is still confined by C and C-like code with its known short-
15S0me parts of this were ported to PLT’s MzC compiler. comings when it comes to dealing with complex problems.

73

6 Future Work
C++ Libraries Currently, there is support only for plain C li-

Assembly Code Generation

Working our way to native just-in-

braries. Depending on implementation details, it can be feasible to time compilation, we plan on adding machine-code generation abil-
interface C++ libraries. This might involve plenty of details regard- ity to PLT Scheme. We will interface this functionality via the
ing object layout, inheritance, virtual function tables, name man- ‘foreign *module. Furthermore, some of the interface aspects can
gling, etc. Hopefully, these issues can be addressed in Scheme s&€ implemented in assembly when runtime is important.

we might not need any further enhancements to the C part of our
implementation.

Parsing C One of the main disadvantage of our system is that it [1]
is not using C, so we cannot use C include files as rough interface
specifications. We plan to investigate a simple C header-file parser
that will parse files into s-expressions, which can be used to auto-
mate some aspects of interface generation (A working parser pro-
totype exists). Such a parser does not need to be fast and efficient,
since parsing can be done at syntax expansion time, eliminating any
run-time speed costs. In addition, note that as usual with other in-
terface generators, this will almost never mean that an interface can
be fully automated, as header files do not provide enough informa-
tion — this situation might improve if we target some IDL language
instead (most use similar syntax).

[3]
[4]
[8]
[6]
Memory Management Issues Currently, our system works well
with both versions of PLT Scheme: the one that uses the Bohm [7]
conservative garbage collector and the one that uses a precise mov-
ing collector. However, there are still issues that interface writers
need to be aware of. In time, we will gain more experience writing
interfaces, which will motivate further functionality that will make

this easier — our goal is, of course, making GC-related issues as
transparent as possible for interface writers.

(8]
9]

(10]
One aspect of this, is dealing with struct objects that might con-
tain GC-able pointers. We have a plan to deal with this, effectively
making it possible to specify in Scheme a map of pointer offsets
that the garbage collector should be aware of, making it treat new [12]
Scheme-defined structs properly. [13]

(11]

Additional Scheme Support There are some areas in which ad-
ditional Scheme support is needed. For example, an array of structs
is hard to deal with — there is no way to get to one such struct and
modify it, since accessing it will create a copy. We believe that it
is possible to write Scheme code that will make this possible, by
not pulling out a struct copy, but rather provide forms that will use [16]
nested reference indexes, where some are vector indexes and some
are struct field names. If we can make this composable, it would be [17]
possible to deal with them in an easy way — without resorting to
pointer aliasing®.

(14]

(15]

[18]
An additional area where additional support is needed, is when
dealing with foreign functions that block. MzScheme contains a
few hooks that are intended to be used when it is embedded as a
library, these hooks can be used for calling blocking foreign func-
tions as well.

7 References

D. M. Beazley. SWIG: An easy to use tool for integrating scripting
languages with C and C++. Proceedings of the 4th USENIX
Tcl/Tk Workshoppages 129-139, July 1996.

2] Matthias Blume. No-longer-foreign: Teaching an ML compiler to

speak C “natively”. IBBABEL'01: First workshop on

multi-language infrastructure and interoperabiljtgeptember 2001.
Rob Browning. G-Wrap home page.

http://www.nongnu.org/g-wrap/

Hangil Chang. KSM-Scheme home page.

http://square.umin.ac.jp/ hchang/ksm/

Marc Feeley. Gambit Scheme system.

http://www.iro.umontreal.ca/ gambit/

Marc Feeley. SRFI 4: Homogeneous numeric vector datatypes.
http://srfi.schemers.org/srfi-4/ .

Robert Bruce Findler and Matthias Felleisen. Contracts for
higher-order functions. IACM SIGPLAN International Conference
on Functional Programming2002.

Kathleen Fisher, Riccardo Pucella, and John Reppy. Data-level
interoperability. Bell Labs Technical Memorandum, April 2000.
Matthew Flatt. PLT MzScheme: Language Manu®8ILT, August
2004. Version 208.

Franz Lisp. Foreign function interfackttp://www.franz.com/-
support/documentation/6.1/doc/foreign-functions.htm

Anthony Green. The libffi home page.

http://sources.redhat.com/libffi/ .

Samuel P. HarbisorModula-3 Prentice-Hall, 1992.

Thomas Heller. The ctypes module.
http://python.net/crew/theller/ctypes/ .

Simon Peyton Jones, Thomas Nordin, and Alastair Reid. GreenCard:
a foreign-language interface for Haskell. In J. Launchbury, editor,
2nd Haskell Workshqi.997.

Richard Kelsey and Michael Sperber. SRFI 50: Mixing scheme and
c. http://srfi.schemers.org/srfi-50/ .

The Open GroupCAE Specification, DCE 1.1: Remote Procedure
Call, chapter 4. The Open Group, October 1997.

Reini Urban. Design issues for foreign function interfaces.
http://xarch.tu-graz.ac.at/autocad/lisp/ffis.html ,

Last updated at 2004.

A. Vogel, B. Gray, and K. Duddy. Understanding any IDL — lesson
one: DCE and CORBA. IiProceedings of the Third International
Workshop on Services in Distributed and Networked Environments
(SDNE’'96) 1996.

Acknowledgments

Using Contracts PLT Scheme has support for procedure con-

tracts [7] which could be used to enhance the robustness of library We would like to thank Matthew Flatt: this work would not be pos-

interfaces. Specifically, we want to treat contract violations in mod- sible without his help, especially with GC-related issues. The com-
ules that use thefdreign * module as more severe, as these are ments and suggestions made by the reviewers have been extremely
equivalents of C bugs, which might result in a crash. A module helpful, Mike Sperber was particularly helpful in the process of re-
would also need some way of declaring it as a proper interface, vising this text.

meaning that code that uses it should not be blamed for crashes.

Alternatively, code that is not intended as an interface (i.e., code

that provides functionality for interface modules) should propagate

the property of contract violation severity.

16The precise garbage collector makes it impossible to get a
pointer to the internal part of an allocated block

74

