
121

The R6RS Status Report

Marc Feeley
Université de Montréal

feeley@iro.umontreal.ca

Editors’ note: This article is the lightly edited text of the
progress report submitted by the Scheme Language Edi-
tors Committee to the Scheme Language Steering Com-
mittee on September 2, 2004. We have included it in the
workshop proceedings to represent the concluding pre-
sentation of the workshop on the state of the standardis-
ation effort by the editors committee.

The members of the Scheme Language Editors Commit-
tee are:

Marc Feeley, editor in chief (Université de Montŕeal)
Will Clinger (Northeastern University)
Kent Dybvig (Indiana University)
Matthew Flatt (University of Utah)
Richard Kelsey (Ember Corporation)
Manuel Serrano (INRIA)
Michael Sperber (DeinProgramm)

The members of the Scheme Language Steering Com-
mittee are:

Alan Bawden (Brandeis University)
Guy L. Steele Jr. (Sun Microsystems)
Mitch Wand (Northeastern University)

–Waddell & Shivers

At the 2003 Scheme workshop in November, the strategy com-
mittee (Alan Bawden, Will Clinger, Kent Dybvig, Matthew Flatt,
Richard Kelsey, Manuel Serrano, Mike Sperber) was given a man-
date to nominate a steering committee and an editors committee to
work on the R6RS standard. In January 2004, the editors commit-
tee was nominated: Feeley (editor in chief), Clinger, Dybvig, Flatt,
Kelsey, Serrano, and Sperber.

On January 19, a private mailing list was created to keep a record
of the email exchanges between the editors. Although some editors
suggested that a more open process would be desirable, we chose to

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming.September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Marc Feeley.

keep this mailing list private to avoid outside interference and keep
the process disciplined and focused. Sometime in the future the
archive of the discussions will be made public so that the reasons
for the design decisions are clear.

Because of the expected difficulty in managing productive discus-
sions for a seven-member committee by email, we adopted some
ground rules for ensuring progress. If an editor does not participate
in an email discussion within a reasonable time limit (which was
set to seven days), then the other editors may assume that editor
does not have an opinion on the subject (or does not want to voice
his opinion), and can be ignored (in the discussion, in a vote,etc.).
I think this has been helpful to create a certain pressure to keep
up-to-date in the discussion.

The subject of backward compatibility was also discussed early on.
That is, will R5RS code work unchanged in an R6RS-compliant
Scheme implementation? Our position is that backward compati-
bility is desirable but that there may be some incompatibilities (for
example at the lexical syntax level) that prevent R5RS code from
working under R6RS. Our first objective is to improve the Scheme
language. Backward compatibility, while important, is a secondary
objective.

We then set off on our first technical task: come up with a list of
goals that is more precise than the one in the draft charter (which
had four items: produce a core Scheme specification, define a mod-
ule system, define a macro system, and designate library modules).
Our plan was to use this list of goals (1) to organize the design pro-
cess, and (2) to identify which changes were uncontroversial (and
thus easier to standardize) and which would require considerable ef-
fort (and where consensus might not be achievable during the R6RS
design process).

All the editors were polled to get a list of specific issues that they
thought needed to be addressed in the R6RS design process (i.e.,
features the committee should consider adding/removing). At the
end of March, we had merged all the editors’ lists into a single
list with each editor’s position. At this point, there had been very
little technical discussion of these issues (on purpose), so that we
could order the issues and discuss them in a disciplined way. As
suggested by Will Clinger, the list was organized into the following
categories:

• Deletions of R5RS-Scheme features;

• Incompatible changes to R5RS Scheme;

• Extensions that could be entirely compatible with R5RS
Scheme



122

– but would break some implementation-specific exten-
sions;

– but would be controversial and aren’t worth it;

– that are controversial or difficult but necessary;

– that are probably uncontroversial.

Below is the list of issues, without each editor’s position. Note that
this list is still open to be expanded as new issues arise in the design
process.

Deletions from R5RS

• removetranscript-on andtranscript-off

• removeforce anddelay

• remove multiple values

Incompatible changes to R5RS

• make syntax case-sensitive

Extensions that would break implementation-specific features

• specify evaluation order

• support for processes

• support for network programming

• object-oriented programming

• external representation for records

• serialization

Extensions to R5RS (controversial and probably unnecessary)

• pattern matching / destructuring

• abstract data type for continuations

• composable continuations

• box types

• uninterned symbols

• extended symbol syntax

• addletrec* , define internaldefine in terms of it

• optional and keyword arguments as in DSSSL

Extensions to R5RS (controversial or difficult but necessary)

• module system

• non-hygienic macros

• records

• mechanism for new primitive types

• Unicode support

• errors and exceptions

• require a mode where “it is an error” means “an error is sig-
naled”

Extensions to R5RS (probably not terribly controversial)

• multiline comments

• external representation for circular structures

• #!eof

• more escape characters

• require that#f , #t , and characters be followed by a delimiter

• case-lambda

• cond-expand

• allow the name of the macro being defined insyntax-rules
to be arbitrary (or_)

• allow continuations created bybegin to accept any number
of values

• tighten up specification ofeq? andeqv? (or otherwise address
their portability problems)

• tighten up specification of inexact arithmetic

• add+0, -0 , +inf , -inf , +nan

• bitwise operations on exact integers

• SRFI 4 homogeneous numeric vectors

• specify dynamic environment

• operations on files

• binary I/O or new I/O subsystem entirely

• string code

• regular expressions

• command-line parsing

• hash tables

• library for dates

• system operations

Editorial changes

• split language into core and libraries

Additional extensions

• expression comments

• subset of Common Lispformat (in a library)

Because of the central role of the module system and its probable
use in splitting the Scheme language into a core and libraries, we
decided that the most pressing issue was the design of the module
system. Our starting point was the “strawman module system” pro-
posed by Flatt, which is based on the MzScheme system. Various
aspects of the proposed system were discussed, mainly to under-
stand it better and to add constructive criticism. Because many as-
pects are interrelated, we did not achieve consensus on any specific
aspect (nor did we really try to achieve it given that this is early in
the design process).

Over May and June, the discussion on the module system was slow
and only two of the seven editors were active. At the end of June,
I suggested that the reason for this apathy might be a lack of prac-
tical experience with the proposed module system (the two editors
that were active both had experience with the MzScheme module
system). I proposed that we should work on building a portable im-
plementation of the module system so that the editors can all exper-
iment with it in our own Scheme implementations. This would get
the editors more involved in the details of the module system, allow
proposed changes to be made and evaluated on-the-fly by changing
the portable implementation, and the resulting public-domain code



123

would greatly increase acceptance of R6RS by other implementors.
It still remains to be seen if this portable implementation becomes
a reality, as it represents quite a bit of work.

Dybvig noted that there are few differences between the mod-
ule system proposed by Flatt and the one in Chez Scheme. This
prompted an effort by Dybvig and Flatt to design a new module
system that combines both systems. There has been a very active
discussion since then.

We have made arrangements to have a whole-day meeting (Septem-
ber 18) in Snowbird to discuss these issues face to face. All editors
will be there, except for Kelsey. We expect the module system to be
the main topic of discussion and to make significant progress. We
will also start discussing other issues on our list.



128


