
99

Shift to control

Chung-chieh Shan
Harvard University

ccshan@post.harvard.edu

Abstract

Delimited control operators abound, but their relationships are ill-
understood, and it remains unclear which (if any) to consider canon-
ical. Although all delimited control operators ever proposed can be
implemented using undelimited continuations and mutable state,
Gasbichler and Sperber [28] showed that an implementation that
does not rely on undelimited continuations can be much more ef-
ficient. Unfortunately, they only implemented Felleisen’scontrol
andprompt [18, 19, 21, 22, 49] and (from there) Danvy and Filin-
ski’s shift andreset [11–13], not other proposed operators with
which an expression may capture its context beyond an arbitrary
number of dynamically enclosing delimiters.

We show thatshift and reset can macro-expresscontrol and
prompt , as well as the other operators, without capturing undelim-
ited continuations or keeping mutable state. This translation is pre-
viously unknown in the literature. As a consequence, research on
implementingshift andreset , such as Gasbichler and Sperber’s,
transfers to the other operators. Moreover, we treat all these opera-
tors by extending a standard CPS transform (defying some skepti-
cism in the literature whether such a treatment exists), so they can
be incorporated into CPS-based language implementations.

1 Introduction

Thecontinuationis the rest of the computation, represented by the
contextof the current expression being evaluated. For example, in
the program

(cons ’a (cons ’b (cons ’c ’())))

the continuation of(cons ’c ’()) is to cons the symbolb, then
the symbola, onto the intermediate result. This continuation is
represented by the context(cons ’a (cons ’b _)) , where_ is a
hole waiting to be plugged in.

Continuations can exist in a program at two levels. First, code may
be written incontinuation-passing style(CPS), in which contin-

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming.September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Chung-chieh Shan.

uations are managed explicitly as values at all times. Second, the
underlying control flow of a program can be treated in terms of con-
tinuations. Scheme providescall-with-current-continuation
(hereaftercall/cc) to access these implicit continuations as first-
class values [35]. Implicit continuations can be made explicit by
a CPS transform on programs; explicit continuations can be made
implicit by a correspondingdirect-styletransform [7, 14, 15, 46].

A delimited(or composable, or partial) continuation is a prefix of
the rest of the computation, represented by a delimited part of the
context of the current expression being evaluated. For example, in
the program

(cons ’a [(cons ’b (cons ’c ’()))])

the continuation of(cons ’c ’()) , as delimited by the square
brackets, is tocons the symbolb onto the intermediate result.
This delimited continuation is represented by the delimited context
[(cons ’b _)].

Delimited continuations, like undelimited ones, can be explicit (in
CPS code) or implicit (in direct-style code). Since Felleisen’s work
[18, 19], many control operators have been proposed to access im-
plicit delimited continuations as first-class values. A typical pro-
posal provides, first, some way to delimit contexts, and second,
some way to capture the current context up to an enclosing delim-
iter. For example, Danvy and Filinski [11–13] proposed two control
operatorsshift andreset , with the following syntax.

Expressions E ::= · · · ∣
∣ (shift f E)

∣
∣ (reset E) (1)

Contexts are captured byshift and delimited byreset . More
specifically,shift captures the current context up to the nearest
dynamically enclosingreset , replaces itabortivelywith the empty
delimited context[_], and bindsf to the captured delimited context
as a functional value. For example, the program

(cons ’a (reset (cons ’b
(shift f (cons 1 (f (f (cons ’c ’()))))))))

evaluates to the list(a 1 b b c) , becauseshift binds f to the
value (lambda (x) (reset (cons ’b x))) , which represents
the delimited context[(cons ’b _)] captured byshift . At the
same time,shift also removes that context from evaluation—in
other words, itabortsthe current computation up to the delimiting
reset —so the result is not(a b 1 b b c) .

Continuations have found a wide variety of applications. Delimited
continuations, in particular, have been used in direct-style repre-
sentations of monads [23–25], partial evaluation [8, 17, 26, 38, 52],
Web interactions [29, 43, 44], mobile code [50], the CPS transform

100

itself [11–13], and linguistics [3, 47]. However, the proliferation
of delimited control operators remains a source of confusion for
users and work for implementors. Even though all delimited control
operators in the literature can be implemented usingcall/cc and
mutable state, we would prefer adirect implementation—that is, an
implementation that does not rely on undelimited continuations—in
hope of reaping the efficiency gains recently shown by Gasbichler
and Sperber [28] with their direct implementation. Unfortunately,
Gasbichler and Sperber only implement Felleisen’scontrol and
prompt [18, 19] and (from there) Danvy and Filinski’sshift and
reset [11–13], not other proposed operators that allow an expres-
sion to capture its context beyond an arbitrary number of dynami-
cally enclosing delimiters [30–32, 45]. Although it is clear that the
latter operators can macro-express1 the former ones in pure Scheme
without call/cc or set! , the converse “seems not to be known”
[30, 31]. Hence it is unclear how an improved implementation of
shift and reset , such as Gasbichler and Sperber’s, can help us
implement other control operators better.

Because the “static” control operatorsshift andreset correspond
closely to a standard CPS transform [12], to macro-express other,
“dynamic” control operators in terms ofshift andreset is to ex-
tend that transform. In the literature, dynamic control operators like
control andprompt are often treated, as if by necessity, using a
non-standard CPS transform in which continuations are represented
as sequences of activation frames [21, 22, 42]. By contrast, we
show in this paper that a standard CPS transform suffices, as one
might expect from Filinski’s representation of monads in terms of
shift andreset [23–25] (see Section 3.1). What distinguishes dy-
namic control operators is that the continuation isrecursive. Thus,
in a language supporting recursion like (pure) Scheme,shift and
reset can macro-express the other control operators after all. As a
consequence, any direct implementation ofshift andreset , such
as Gasbichler and Sperber’s, gives rise to a direct implementation
of the other operators.2 Moreover, because our translation of all
these operators extends a standard CPS transform, they can be in-
corporated into CPS-based language implementations.

1By “macro-express” we mean Felleisen’s notion of macro ex-
pressibility [20], but we surround each program by a “top-level ”
construct to mark its syntactic top level. We also impose an ad-
ditional requirement: given any space consumption bounds, there
must exist another space consumption bounds′, such that every pro-
gram withins translates to a program withins′. This requirement is
intended to rule out

• implementing delimited continuations by capturing undelim-
ited ones; and

• keeping mutable state by modeling memory in a single storage
cell, whichshift andreset can simulate (while accumulat-
ing garbage in the simulated store).

Space consumption can be defined along the lines of Clinger [5],
for an abstract machine such as Biernacka et al.’s forshift and
reset [4].

2A reviewer suggests that Gasbichler and Sperber’s technique
can be easily adapted to other control operators. For example, to
implement the (dynamic)shift0 operator below, it seems that one
need only replace the reset flag in every frame with a reset count,
and decrement it after shifting. Given how many delimited control
operators have been (and will be?) proposed—several, likecupto
[30, 31], are related but not identical to the four considered in this
paper—macro-expressibility results like ours are attractive because
they do not require changing the Scheme implementation at all be-
fore new operators can be introduced.

The rest of this paper is structured as follows. Section 2 introduces
the static control operatorsshift and reset , and their dynamic
counterparts. Section 3 expresses dynamic control in terms of static
control with recursive continuations. Section 4 then concludes and
mentions additional related work.

2 A tale of two resets

Danvy and Filinski’sshift andreset [11–13] can be defined op-
erationally as well as denotationally. Operationally, we can specify
transition rules in the style of Felleisen [18]:3

M[(reset V)] B M[V] (2)

M[(reset C[(shift f E)])] B M[(reset E′)]
whereE′ = E{f 7→ (lambda (x) (reset C[x])) } (3)

HereV stands for a value,C stands for an evaluation context that
does not cross areset boundary, andM stands for an evaluation
context that may cross areset boundary:

Values V ::= (lambda (x) E)
∣
∣ · · · (4)

Contexts C[] ::= []
∣
∣ C[([] E)]

∣
∣ C[(V [])]

∣
∣ · · · (5)

Metacontexts M[] ::= C[]
∣
∣ M[(reset C[])] (6)

Denotationally, we can specify a CPS transform to map programs
that useshift andreset to programs that do not. The core of this
transform is shown in Figure 1; its first three lines are what this
paper means by “a standard (call-by-value) CPS transform”.4

As Danvy and others have long observed [10], the syntactic defi-
nitions above of contexts and metacontexts are not rabbits out of
hats. Rather, contexts are defunctionalized representations of the
continuation functions in Figure 1.

Contexts of the form: represent continuations of the form:

[] (lambda (v) v)

C[([] E)] (lambda (f)
(E′ (lambda (x) ((f x) C′))))

C[(V [])] (lambda (x) ((V ′ x) C′))

Similarly, metacontexts (such as(reset (f (reset (g [])))))
are defunctionalized representations of the implicit metacontinua-
tions in Figure 1—that is, of the continuations that can be made
explicit by CPS-transforming the right hand side of Figure 1.

The CPS transform relates not just terms but also types between the
source and target languages. If the source program is a well-typed
term in, say, the simply-typedλ-calculus, then the output of the
transform is also well-typed in the simply-typedλ-calculus: every
source type at the top level or to the right of a function arrow is

3To help the exposition below, these transition rules do not han-
dle the case when ashift term is evaluated with no dynamically
enclosingreset . Danvy and Filinski’s original proposal amounts
here to enclosing the entire program in a top-levelreset .

4The right-hand-sides forshift andreset in Figure 1 contain
non-tail calls, as do (18–19) in Section 3.1 below. Thus these equa-
tions do not really constitute a CPS transform, only a continuation-
composing-style transform that extends a standard CPS transform
on the pureλ-calculus. In particular, the output of this transform
is sensitive to the evaluation order of the target language. Danvy
and Filinski [12] regain CPS by CPS-transforming the output of
this transform a second time. We can do so but need not, since by
Section 3.2 our equations’ right-hand-sides will be in CPS again,
with all arguments pure.

101

x = (lambda (c) (c x))

(lambda (x) E) = (lambda (c) (c (lambda (x) E)))

(E1 E2) = (lambda (c) (E1 (lambda (f) (E2 (lambda (x) ((f x) c))))))

(reset E) = (lambda (c) (c (E (lambda (v) v))))

(shift f E) = (lambda (c) (let ((f (lambda (x) (lambda (c2) (c2 (c x))))))
(E (lambda (v) v))))

Figure 1. A continuation-passing-style transform forshift and reset

mapped to a type of the form(τ → ω1) → ω2, whereω1 andω2
areanswer types[39]. Moreover, the type system of the target lan-
guage can be regarded as a type system for the source language. For
example, the expression

(shift f (if (f ’a) 1 2))

translates to a term of the type(Sym→ Bool)→ Int. In words, the
expression can appear in a context that produces a boolean when
plugged with a symbol, and produce an integer as the final an-
swer. We can take such descriptions as the types of source terms,
as Danvy and Filinski [11] do. They write the typing judgment

·,Bool ` (shift f (if (f ’a) 1 2)) : Sym, Int (7)

to mean that the expression behaves locally like a symbol, but incurs
a control effect that changes the answer type fromBool to Int.

The transition rule (3) forshift mentionsreset twice on its right
hand side. On the first line, thereset that delimits the captured
context is preserved after the capture, so the context from a sin-
gle reset outward is protected from manipulation by any number
of dynamically enclosedshift invocations. Informally speaking,
reset makes any piece of code appear pure to the outside, that is,
devoid of control effects. On the second line, the captured context
is surrounded byreset , sof is bound to a pure function.

Neither occurrence ofreset on the right hand side of (3) is acci-
dental; they are necessary for the operational semantics to match
the transform in Figure 1. Despite the appeal of this match, many
other delimited control operators have been proposed (historically,
both before and after Danvy and Filinski’s work) that remove one
or both occurrences ofreset on the right hand side of (3). Three
such variations onshift are possible, namelycontrol , shift0 ,
andcontrol0 below.

M[(reset C[(control f E)])] B M[(reset E′)]
whereE′ = E{f 7→ (lambda (x) C[x]) } (8)

M[(reset C[(shift0 f E)])] B M[E′]
whereE′ = E{f 7→ (lambda (x) (reset C[x])) } (9)

M[(reset C[(control0 f E)])] B M[E′]
whereE′ = E{f 7→ (lambda (x) C[x]) } (10)

Felleisen’scontrol operator [18, 19, 21, 22, 49], the first delimited
control operator in the literature, captures a delimited context with-
out surrounding it withreset , sof may operate on the contexts in
which it is subsequently invoked. The difference betweenshift
andcontrol can be observed as follows: the program

(reset (let ((y (shift f (cons ’a (f ’())))))
(shift g y)))

evaluates to(a) ,5 whereas the program

(reset (let ((y (control f (cons ’a (f ’())))))
(control g y)))

evaluates to() .6 Sitaram’sfcontrol [48] is closely related to
control in nature. These authors refer toreset asprompt , run ,
#, or %.

Theshift0 operator captures a delimited context likeshift does,
but removes the delimitingreset . For example, the program

(reset (cons ’a
(reset (shift f (shift g ’())))))

evaluates to(a) ,7 whereas the program

(reset (cons ’a
(reset (shift0 f (shift0 g ’())))))

evaluates to() .8 Danvy and Filinski [11] consider thisshift0 op-
erator briefly. Also, Hieb and Dybvig’sspawn [32] can be thought
of as areset that, each time it is invoked to insert a new delimiter,
creates a specificshift0 operator for that new delimiter.

The control0 operator is likecontrol but removes the delimit-

5The reduction sequence begins:
(reset (cons ’a

((lambda (x)
(reset (let ((y x)) (shift g y))))

’())))
(reset (cons ’a

(reset (let ((y ’())) (shift g y)))))
(reset (cons ’a (reset (shift g ’()))))
(reset (cons ’a (reset ’())))

Hereshift f introduces areset under thelambda , which stops
shift g from capturingcons ’a .

6The reduction sequence begins:
(reset (cons ’a

((lambda (x)
(let ((y x)) (control g y)))

’())))
(reset (cons ’a

(let ((y ’())) (control g y))))
(reset (cons ’a (control g ’())))
(reset ’())

Herecontrol f allowscontrol g to capturecons ’a .
7The reduction sequence begins:

(reset (cons ’a (reset (shift g ’()))))
(reset (cons ’a (reset ’())))
8The reduction sequence is:

(reset (cons ’a (shift0 g ’())))
’()

102

ing reset . It is essentially Gunter et al.’scupto [30, 31] stripped
down to one prompt variable, and closely related to Queinnec and
Serpette’ssplitter [45].

Described operationally as in (8–10), these variations onshift
seem like minor changes with little sense of purpose. Because
addingreset is easy,control andshift0 can obviously macro-
expressshift , andcontrol0 can macro-express them all, without
call/cc or mutable state. The opposite direction—whethershift
can simulate any of itsreset -removed cousins, for example—
“seems not to be known” to Gunter et al. [30, 31]. Since no version
of shift is clearly “right”, Gunter et al. choose to takecontrol0
as primitive.

Concomitant with the apparent difficulty of usingshift to simu-
late the other control operators is an apparent difficulty of devising
denotational semantics for these operators under a standard CPS
transform. More precisely, unlike withshift , it is unclear how to
translatecontrol , shift0 , or control0 away using a transform
that coincides on pureλ-terms with the first three lines of Figure 1,
where contexts are represented as continuation functions. Instead,
semantics for these operators in the literature either rely on com-
plex mutable data structures (in essence defining the operators by
implementing them in Scheme) or represent contexts as sequences
of activation frames,9 termedabstract continuations[21, 22, 42].
Standard continuation semantics is declared “inadequate” [21] and
“insufficient” [22],10 ascontrol is said to “admit no such simple
static interpretation” [13]. Such claims are surprising in hindsight
of Filinski’s representation of monads in terms ofshift andreset
[23–25]—surely even includingcontrol0 in a language would not
disqualify it from Moggi’s notions of computation [40]?

Danvy and Filinski [11–13] informally classify theirshift and
reset operators aslexical andstatic, and other delimited control
operators such ascontrol asdynamic. They use these words to
draw an analogy to lexical versus dynamic scoping for variables:
roughly speaking,shift andreset , unlike the other operators, can
be defined and implemented without traversing arbitrarily deeply
into data structures at run-time. The next section shows that, as
soon as we allow traversing arbitrarily deeply into data structures
at run-time, dynamic control operators can be treated with the same
transform as static ones. That is, continuation semantics is suffi-
cient after all, as long as the continuation can be recursive.11

Our development below of recursive continuations is guided by re-
cursive types. For example, ifα is a type, then the typeList α of
singly-linkedα-lists can be defined by

List α = 1+α×List α, (11)

where 1 is the unit type and× constructs product types. For brevity,
we take the unfolding of a recursive type to give not just isomorphic
but in fact equivalent types. For example, (11) states an equation
between types, not just an isomorphism. To use terms coined by

9Or an algebra thereof.
10A reviewer states that these declarations are objections to the

non-tail calls in Figure 1 (as continuation semantics forshift and
reset) and (18–19) in Section 3.1 (as continuation semantics for
control andprompt). However, see footnote 4.

11One way to see the connection between dynamic control op-
erators and recursive continuations may be to observe how the fol-
lowing program enters an infinite loop.

(prompt (begin (control f (begin (f 0) (f 0)))
(control f (begin (f 0) (f 0)))))

Crary et al. [6, 27], this paper showsequi-recursivetypes, butiso-
recursivetypes can be used too.

3 Recursive continuations

In this central section of the paper, we treat dynamic control oper-
ators by extending the standard CPS transform, and by translating
them intoshift andreset . The key to these treatments is to rep-
resent delimited contexts as functions whose types are recursive:
When a delimited context is captured with a dynamic control oper-
ator, then invoked, it may take control over the delimited context at
the invocation site. Hence, the former context must take the latter
context as an argument in our CPS transform. Roughly speaking,
then, the type of contexts must mention itself, that is, be recursive.

Let us first review delimited contexts captured byshift andreset .
The CPS transform in Figure 1 represents a delimited context as a
continuation, that is, a function of typeτ → ω. Danvy and Filinski
identify τ with the type of the intermediate result (that is, the hole in
the context) andω with the type of the answer (that is, the context
once plugged). For comparison with other control operators below,
we define the types

Context τ ω = τ → ω, (12)

Answer ω = ω, (13)

such that

Context τ ω = τ → Answer ω. (14)

To take an example, the delimited context[(< 1 _)] takes the type
Context Int Bool (or equivalently,Int→Bool) when captured with
shift , because plugging the hole_ with an integer gives an answer
that is a boolean. In other words, the function

(lambda (x)
(reset (< 1 x)))

(which represents that context, as captured byshift) maps in-
tegers to booleans. For another example, the delimited con-
text [(let ((y _)) (shift g (< 1 y)))], when captured by
shift , also has the typeContext Int Bool. In other words, the
function

(lambda (x)
(reset (let ((y x)) (shift g (< 1 y)))))

(which represents that context, as captured byshift) also maps
integers to booleans. In fact, these two contexts captured byshift
are observationally equivalent, because theshift g above has only
the empty delimited context[_] to capture.

3.1 control

The context[(let ((y _)) (control g (< 1 y)))] captured
with control is not equivalent to[(< 1 _)], because the function

(lambda (x)
(let ((y x)) (control g (< 1 y))))

(which represents the first context, as captured bycontrol) wipes
out its surrounding delimited context when invoked, whereas the
function

(lambda (x)
(< 1 x))

103

(which represents the second context, as captured bycontrol) does
not. In general, when a delimited context captured bycontrol
is invoked, it may further capture the surrounding delimited con-
text (up to the nearest dynamically enclosingreset) at the point
of invocation. Thus a delimited context captured bycontrol , un-
like one captured byshift , is not a function from an intermedi-
ate result (with which to plug a hole) to a final answer. Rather, a
control -captured context can be thought of as a function from an
intermediate resultand any surrounding delimited contextto a fi-
nal answer. The surrounding context may be the empty context[_]
(if the captured context is invoked immediately withinreset) or
not empty. Accordingly, we let a delimited context captured by
control whose hole is of typeτ and answer is of typeω take the
typeContext′ τ ω, where

Context′ τ ω = τ → Maybe(Context′ ω ω) → ω. (15)

In this recursive type definition,Maybe α means either anα-value
or the special token#f , like the discriminated union typesMaybe a
in Haskell. We use#f to represent the empty surrounding context.

The function send below plugs an intermediate answerv (of
typeω) into a delimited contextmc(of typeMaybe(Context′ ω ω))
by callingmcwith v and the trivial delimited context#f . If mc is the
special token#f , then we are pluggingv into the empty context, so
the final answer is justv .

(define (send v)
(lambda (mc) (if mc ((mc v) #f) v)))

This function is of typeContext′ ω ω: it is itself a delimited con-
text, namely the empty one. If our target language lets us compare
values againstsend (even intensionally usingeq? , say), then we
can do so rather than comparing values against#f , and drop our
use ofMaybe. That is, we could implementsend as

(define (send v)
(lambda (mc)

(if (eq? send mc) v ((mc v) send))))

but do not, for clarity.

When two shift -captured contexts are composed as functions
at the source level, the result corresponds to concatenating con-
tinuations by function composition in the target language. By
contrast, to concatenatecontrol -captured contexts of the recur-
sive type defined in (15), we define a recursive function, of type(
Context′ τ ω×Maybe (Context′ ω ω)

) → Context′ τ ω:

(define (compose c mc1)
(if mc1 (lambda (v)

(lambda (mc2)
((c v) (compose mc1 mc2))))

c))

According to (15), the typeContext′ τ ω is a function type, andτ
only appears in its domain, not codomain. In other words, a context
captured bycontrol whose hole type isτ has the function type
of aτ-continuation, just like delimited contexts captured byshift ,
except for the recursive answer typeAnswer′ ω defined by

Answer′ ω = Maybe (Context′ ω ω)→ ω
= Maybe (ω → Answer′ ω) → ω, (16)

such that

Context′ τ ω = τ → Answer′ ω
= Context τ (Answer′ ω). (17)

ThusContext′ can be written in terms ofContext! Hence, delim-
ited contexts captured bycontrol can be represented as ordinary,
if recursive, continuations. The equations below extend the first
three lines of Figure 1 tocontrol . It maps every source typeτ,
at the top level or to the right of a function arrow, to a type of the
form (τ → Answer′ ω) →Answer′ ω. To distinguish thereset for
control here from thereset for shift above, we writeprompt
instead ofreset .

(prompt E) =
(lambda (c) (c ((E send) #f))) (18)

(control f E) =
(lambda (c1)

(lambda (mc1)
(let ((f (lambda (x)

(lambda (c2)
(lambda (mc2)

(((compose c1 mc1) x)
(compose c2 mc2)))))))

((E send) #f)))) (19)

Because this transform extends a standard call-by-value CPS trans-
form on the pureλ-calculus, it shows how to treatcontrol and
prompt as operations in the continuation monad (with answer type
Answer′ ω). Then, becauseshift and reset expresses all op-
erations in the continuation monad, we can definecontrol and
prompt in direct style as macros in terms ofshift andreset .

(define-syntax prompt
(syntax-rules ()

((_ e) ((reset (send e)) #f))))

(define-syntax control
(syntax-rules ()

((_ f e)
(shift c1

(lambda (mc1)
(let ((f (lambda (x)

(shift c2
(lambda (mc2)

(((compose c1 mc1) x)
(compose c2 mc2)))))))

((reset (send e)) #f)))))))

These source-level macros correspond directly to the target-level
equations (18–19), except:

• Where the target-level equations abstract over a continua-
tion argument, the source-level macros useshift rather than
lambda .

• Where the equations pass the continuationsend to E, the
macros say(reset (send E)) , so as to placeE in the de-
limited context[(send _)].

This implementation ofcontrol andprompt uses neithercall/cc
nor mutable state; in particular, it does not capture any continuation
beyond the outermost delimitingprompt .

Another way to view the same definitions in hindsight is to rec-
ognize that a denotational semantics given by Felleisen et al. [21,
Section 4] encodescontrol andprompt in a monad that maps each
typeτ to the type(τ→Answer′ ω)→ω. This monad is not the con-
tinuation monad, because the answer typesAnswer′ ω and ω are
different; hence, Felleisen et al.’s equations for their denotational
semantics do not give a standard CPS transform. Nevertheless, we

104

can still use Filinski’s representation of monads in terms ofshift
andreset [23–25] to representcontrol andprompt —essentially
as above, in fact. As an anonymous reviewer hints, this observation
is one way to show our definitions to correctly implementcontrol
andprompt .

Sitaram and Felleisen [49] implementcontrol and prompt in
terms of call/cc in Scheme. That implementation uses both
call/cc and mutable state. Our implementation ofcontrol and
prompt usingshift and reset can be composed with Filinski’s
implementation ofshift and reset usingcall/cc [23] to yield
a more modular implementation ofcontrol and prompt using
call/cc . Sitaram and Felleisen’s implementation maintains a
global, mutablerun-stack. The run-stack is comprised ofsub-
stacks, one for each dynamically activeprompt . Each sub-stack
is a list of invocation points (that is, undelimited continuations cap-
tured bycall/cc). These data structures can be correlated with
our implementation: The run-stack is a sequence of “mc” functions
(of type Maybe(Context′ ω ω)), one for each dynamically active
prompt . Eachmc function is a sub-stack, the result of concatenat-
ing control -captured contexts usingcompose .

3.2 shift0

Whenshift0 captures a delimited context, it does not replace it
with the trivial delimited context asshift does. Instead, it removes
the captured context along with its delimitingreset , exposing the
next-outer delimited context up to the next-nearest dynamically en-
closing reset . With shift0 in the language,reset is not idem-
potent: (reset E) is not equivalent to(reset (reset E)) , be-
cause eachreset only “defends against” oneshift0 . For example,
the program

(reset (cons ’a
(reset (shift0 f (shift0 g ’())))))

evaluates to() , but the program

(reset (cons ’a
(reset

(reset (shift0 f (shift0 g ’()))))))

evaluates to(a) .

Becauseshift0 removes the delimitingreset when capturing a
delimited context, the context

[(let ((y _))
(shift0 f (shift0 g (< 1 y))))]

captured withshift0 is not equivalent to the contexts

[(let ((y _)) (shift0 g (< 1 y)))]
[(< 1 _)]

captured withshift0 . That is, the function

(lambda (x)
(reset (let ((y x))

(shift0 f (shift0 g (< 1 y))))))

wipes out its surrounding delimited context when invoked, whereas
the functions

(lambda (x)
(reset (let ((y x)) (shift0 g (< 1 y)))))

(lambda (x)
(reset (< 1 x)))

do not.

Appendix C of Danvy and Filinski’s technical report [11] consid-
ers this variation onshift briefly. They model it denotationally by
passing around a list of delimited contexts, which can be thought of
as a sequence of activation frames, except each frame corresponds
to a reset rather than a function call.12 In our formulation, a de-
limited context captured byshift0 whose hole type isτ and whose
answer type isω has the typeContext0 τ ω, where

Context0 τ ω = τ → List (Context0 ω ω) → ω. (20)

In this recursive type definition,List α means a singly-linked list
of α-values, either acons cell or the empty list() . A list of type
List (Context0 ω ω) contains delimited contexts from innermost to
outermost, separated by control delimiters.

The functionpropagate below plugs an intermediate answerv (of
type ω) into a list of contextslc (of typeList (Context0 ω ω)) by
calling the head oflc with v and the tail oflc . If c is empty, then
the final answer is simplyv .

(define (propagate v)
(lambda (lc)

(if (null? lc) v
(((car lc) v) (cdr lc)))))

This function is of typeContext0 ω ω: it is itself a delimited con-
text, namely the empty one.

Like the typeContext′ τ ω in Section 3.1,Context0 τ ω is a func-
tion type in whichτ only appears in the domain. Hence a delimited
context captured byshift0 is just like one captured byshift , ex-
cept the answer typeAnswer0 ω of the continuation is recursive,
defined by

Answer0 ω = List (Context0 ω ω) → ω
= List (ω → Answer0 ω) → ω, (21)

such that

Context0 τ ω = τ → Answer0 ω
= Context τ (Answer0 ω). (22)

ThusContext0 can be written in terms ofContext. Therefore, just
as with control , delimited contexts captured byshift0 can be
represented as ordinary continuations. Following the Appendix C
mentioned above, the equations below extend the first three lines
of Figure 1 to a CPS transform forshift0 . It maps every source
typeτ, at the top level or to the right of a function arrow, to a type
of the form (τ → Answer0 ω) → Answer0 ω. To distinguish the
reset for shift0 here from thereset for shift above, we write
reset0 instead ofreset .

(reset0 E) =
(lambda (c)

(lambda (lc)
((E propagate) (cons c lc)))) (23)

12Johnson and Duggan [34] add control facilities to the program-
ming language GL that provide power similar to that ofshift0
and reset , but they make each function call delimit the context
(like Landin’s SECD machine [9, 10, 37]), so their frames do cor-
respond to function calls.

105

(shift0 f E) =
(lambda (c1)

(lambda (lc)
(let ((f (lambda (x)

(lambda (c2)
(lambda (lc)

((c1 x) (cons c2 lc)))))))
((E (car lc)) (cdr lc))))) (24)

As in Section 3.1, these equations13 can be turned into a direct im-
plementation ofshift0 andreset0 in terms ofshift andreset
that neither captures undelimited continuations nor keeps mutable
state.

3.3 control0

The control0 operator removes both occurrences ofreset on
the right hand side of (3); it combines the dynamic properties of
control and shift0 . It is thus not surprising that we can treat
control0 with recursive continuations and the CPS transform by
combining the ideas from Sections 3.1–2.

A delimited context captured bycontrol0 , with hole typeτ and
answer typeω, has the type

Context′0 τ ω = τ →Maybe(Context′0 ω ω) →
List (Context′0 ω ω) → ω, (25)

in which τ only appears in the domain. A delimited context cap-
tured bycontrol0 is thus just like one captured byshift with the
recursive answer type

Answer′0 ω = Maybe (Context′0 ω ω)→
List(Context′0 ω ω) → ω

= Maybe (ω → Answer′0 ω) →
List(ω → Answer′0 ω)→ ω, (26)

such that

Context′0 τ ω = τ → Answer′0 ω
= Context τ (Answer′0 ω). (27)

Thus Context′0 can be written in terms ofContext. Informally
speaking, theMaybe part of the types above keeps track of the
delimited context within the nearest dynamically enclosingreset ,
and theList part keeps track of the delimited contexts beyond that
reset .

The trivial delimited context of typeContext′0 ω ω is the function
send-propagate below, which combinessend andpropagate .

(define (send-propagate v)
(lambda (mc)

(if mc ((mc v) #f)
(lambda (lc)

(if (null? lc) v
((((car lc) v) #f)

(cdr lc)))))))

To compose delimited contexts captured bycontrol0 , we can sim-
ply use the code forcompose above, because—although it is created

13Now in CPS; see footnote 4. Expressions like
((E propagate) (cons c lc))

may appear to contain a non-tail call, but should be regarded as a
curried call with two arguments.

for control —it also has the type
(
Context′0 τ ω×Maybe (Context′0 ω ω)

) → Context′0 τ ω. (28)

Finally, we can usesend-propagate and compose to define an
ordinary CPS transform forcontrol0 . Here we writeprompt0
instead ofreset to mean thereset for control0 .

(prompt0 E) =
(lambda (c)

(lambda (mc)
(lambda (lc)

(((E send-propagate) #f)
(cons (compose c mc) lc))))) (29)

(control0 f E) =
(lambda (c1)

(lambda (mc1)
(lambda (lc)

(let ((f (lambda (x)
(lambda (c2)

(lambda (mc2)
(((compose c1 mc1) x)

(compose c2 mc2)))))))
(((E (car lc)) #f) (cdr lc)))))) (30)

This CPS transform maps every source typeτ, at the top level
or to the right of a function arrow, to a type of the form(τ →
Answer′0 ω) → Answer′0 ω. Again, these CPS equations can be
turned into an implementation ofcontrol0 and prompt0 using
shift and reset that neither captures undelimited continuations
nor keeps mutable state.

4 Conclusion and related work

This paper presents the first CPS transform for dynamic delimited
control operators, including Felleisen’scontrol andprompt , that
is consistent with a standard CPS transform. We have shown that
Danvy and Filinski’s static operatorsshift and reset are just as
expressive as dynamic ones. For a delimited control operator to be
dynamic is for it to require recursive continuations.

Now that we know how to implement dynamic operators in terms
of shift andreset without capturing undelimited continuations or
keeping mutable state, direct implementations ofshift andreset
like Gasbichler and Sperber’s [28] give rise to direct implementa-
tions of dynamic operators. Moreover, because our CPS transform
extends a standard one, it can be incorporated into CPS-based lan-
guage implementations.

Besides explicating dynamic control operators, recursive continu-
ations are also useful in practical programming. For example, the
iterative interaction pattern between a coroutine and its environment
is reflected in a recursive continuation, specifically its recursive an-
swer type [25, Section 4.2], which can be depicted graphically as a
flowchart. Two special cases of such interactions are:

• the interaction between a Web server and user agents [16, 29,
43, 44]; and

• the interaction between a cursor iterating over a collection and
its client [36], as epitomized in the classic same-fringe prob-
lem.

Another potential application of recursive continuations lies in
Balat et al.’s type-directed partial evaluator for theλ-calculus with
products and sums [2], which computes normal forms forλ-terms

106

under βη-equivalence. To normalize terms that use sums, Balat
et al.’s algorithm uses Gunter et al.’scupto operator [30, 31], rather
thanshift as in previous work by Balat and Danvy [1]. As Balat
et al.’s algorithm evaluates a term, it keeps a list of possible scope
locations at which futurecase expressions may be inserted, in the
form of prompts forcupto . (By contrast, Balat and Danvy’s earlier
algorithm usingshift only considers one scope location at which
to insert acase expression.) Ifcupto is replaced byshift with
a recursive continuation, then that list of prompts would be pleas-
ingly identified with the stack of control points that Gunter et al.
use to implementcupto in the first place. A direct implementation
of cupto or shift would also make the algorithm more efficient.

5 Acknowledgements

This paper would not be written without the help and encour-
agement of Oleg Kiselyov. Thanks also to Chris Barker, John
Clements, Olivier Danvy, Matthias Felleisen, Andrzej Filinski,
Shriram Krishnamurthi, Stuart Shieber, Sam Tobin-Hochstadt, and
six anonymous reviewers for ICFP 2004 and this workshop. This
work is supported by the United States National Science Founda-
tion Grant BCS-0236592.

References

[1] Balat, Vincent, and Olivier Danvy. 2002. Memoization in
type-directed partial evaluation. InProceedings of GPCE
2002: 1st ACM conference on generative programming and
component engineering, ed. Don S. Batory, Charles Consel,
and Walid Taha, 78–92. Lecture Notes in Computer Science
2487, Berlin: Springer-Verlag.

[2] Balat, Vincent, Roberto Di Cosmo, and Marcelo Fiore. 2004.
Extensional normalisation and type-directed partial evalua-
tion for typed lambda calculus with sums. InPOPL ’04: Con-
ference record of the annual ACM symposium on principles of
programming languages, 64–76. New York: ACM Press.

[3] Barker, Chris. 2004. Continuations in natural language (ex-
tended abstract). In [51], 1–11.

[4] Biernacka, Małgorzata, Dariusz Biernacki, and Olivier
Danvy. 2004. An operational foundation for delimited con-
tinuations. In [51], 25–33.

[5] Clinger, William D. 1998. Proper tail recursion and space
efficiency. InPOPL ’98: Conference record of the annual
ACM symposium on principles of programming languages,
174–185. New York: ACM Press.

[6] Crary, Karl, Robert Harper, and Sidd Puri. 1999. What is a
recursive module? InPLDI ’99: Proceedings of the ACM
conference on programming language design and implemen-
tation, vol. 34(5) of ACM SIGPLAN Notices, 50–63. New
York: ACM Press.

[7] Danvy, Olivier. 1994. Back to direct style.Science of Com-
puter Programming22(3):183–195.

[8] ———. 1996. Type-directed partial evaluation. InPOPL ’96:
Conference record of the annual ACM symposium on princi-
ples of programming languages, 242–257. New York: ACM
Press.

[9] ———. 2003. A rational deconstruction of Landin’s SECD
machine. Report RS-03-33, BRICS, Denmark.

[10] ———. 2004. On evaluation contexts, continuations, and the
rest of the computation. In [51].

[11] Danvy, Olivier, and Andrzej Filinski. 1989. A functional ab-
straction of typed contexts. Tech. Rep. 89/12, DIKU, Univer-
sity of Copenhagen, Denmark.http://www.daimi.au.dk/
~danvy/Papers/fatc.ps.gz .

[12] ———. 1990. Abstracting control. InProceedings of the
1990 ACM conference on Lisp and functional programming,
151–160. New York: ACM Press.

[13] ———. 1992. Representing control: A study of the CPS
transformation. Mathematical Structures in Computer Sci-
ence2(4):361–391.

[14] Danvy, Olivier, and Julia L. Lawall. 1992. Back to direct
style II: First-class continuations. InProceedings of the 1992
ACM conference on Lisp and functional programming, ed.
William D. Clinger, vol. V(1) ofLisp Pointers, 299–310. New
York: ACM Press.

[15] ———. 1996. Back to direct style II: First-class continua-
tions. Report RS-96-20, BRICS, Denmark.

[16] Double, Chris. 2004. Partial continuations. http:
//www.double.co.nz/scheme/partial-continuations/
partial-continuations.html .

[17] Dybjer, Peter, and Andrzej Filinski. 2002. Normalization and
partial evaluation. InAPPSEM 2000: International summer
school on applied semantics, advanced lectures, ed. Gilles
Barthe, Peter Dybjer, Luis Pinto, and João Saraiva, 137–192.
Lecture Notes in Computer Science 2395, Berlin: Springer-
Verlag.

[18] Felleisen, Matthias. 1987. The calculi ofλv-CS conversion:
A syntactic theory of control and state in imperative higher-
order programming languages. Ph.D. thesis, Indiana Univer-
sity. Also as Tech. Rep. 226, Department of Computer Sci-
ence, Indiana University.

[19] ———. 1988. The theory and practice of first-class prompts.
In [41], 180–190.

[20] ———. 1991. On the expressive power of programming lan-
guages.Science of Computer Programming17(1–3):35–75.

[21] Felleisen, Matthias, Daniel P. Friedman, Bruce F. Duba, and
John Merrill. 1987. Beyond continuations. Tech. Rep. 216,
Computer Science Department, Indiana University.

[22] Felleisen, Matthias, Mitchell Wand, Daniel P. Friedman, and
Bruce F. Duba. 1988. Abstract continuations: A mathematical
semantics for handling full jumps. InProceedings of the 1988
ACM conference on Lisp and functional programming, 52–62.
New York: ACM Press.

[23] Filinski, Andrzej. 1994. Representing monads. InPOPL ’94:
Conference record of the annual ACM symposium on princi-
ples of programming languages, 446–457. New York: ACM
Press.

[24] ———. 1996. Controlling effects. Ph.D. thesis, School of
Computer Science, Carnegie Mellon University. Also as Tech.
Rep. CMU-CS-96-119.

[25] ———. 1999. Representing layered monads. InPOPL ’99:
Conference record of the annual ACM symposium on princi-
ples of programming languages, 175–188. New York: ACM
Press.

[26] ———. 2001. Normalization by evaluation for the compu-
ational lambda-calculus. InTLCA 2001: Proceedings of the
5th international conference on typed lambda calculi and ap-
plications, ed. Samson Abramsky, 151–165. Lecture Notes in
Computer Science 2044, Berlin: Springer-Verlag.

107

[27] Gapeyev, Vladimir, Michael Y. Levin, and Benjamin C.
Pierce. 2000. Recursive subtyping revealed. In [33], 221–
231.

[28] Gasbichler, Martin, and Michael Sperber. 2002. Final shift for
call/cc: Direct implementation of shift and reset. InICFP ’02:
Proceedings of the ACM international conference on func-
tional programming, 271–282. New York: ACM Press.

[29] Graunke, Paul Thorsen. 2003. Web interactions. Ph.D. thesis,
College of Computer Science, Northeastern University.

[30] Gunter, Carl A., Didier Rémy, and Jon G. Riecke. 1995.
A generalization of exceptions and control in ML-like lan-
guages. InFunctional programming languages and computer
architecture: 7th conference, ed. Simon L. Peyton Jones, 12–
23. New York: ACM Press.

[31] ———. 1998. Return types for functional continuations.
http://pauillac.inria.fr/~remy/work/cupto/ .

[32] Hieb, Robert, and R. Kent Dybvig. 1990. Continuations and
concurrency. InProceedings of the 2nd ACM SIGPLAN sym-
posium on principles and practice of parallel programming,
128–136. New York: ACM Press.

[33] ICFP. 2000. ICFP ’00: Proceedings of the ACM interna-
tional conference on functional programming, vol. 35(9) of
ACM SIGPLAN Notices. New York: ACM Press.

[34] Johnson, Gregory F., and Dominic Duggan. 1988. Stores and
partial continuations as first-class objects in a language and its
environment. In [41], 158–168.

[35] Kelsey, Richard, William D. Clinger, Jonathan Rees, Harold
Abelson, R. Kent Dybvig, Christopher T. Haynes, G. J. Rozas,
N. I. Adams, IV, Daniel P. Friedman, Eugene Kohlbecker,
Guy L. Steele, D. H. Bartley, R. Halstead, D. Oxley, G. J.
Sussman, G. Brooks, C. Hanson, K. M. Pitman, and Mitchell
Wand. 1998. Revised5 report on the algorithmic language
Scheme.Higher-Order and Symbolic Computation11(1):7–
105. Also asACM SIGPLAN Notices33(9):26–76.

[36] Kiselyov, Oleg. 2004. General ways to traverse collections.
http://okmij.org/ftp/Scheme/enumerators-callcc.
html .

[37] Landin, Peter J. 1964. The mechanical evaluation of expres-
sions.The Computer Journal6(4):308–320.

[38] Lawall, Julia L., and Olivier Danvy. 1994. Continuation-based
partial evaluation. InProceedings of the 1994 ACM con-
ference on Lisp and functional programming, 227–238. New
York: ACM Press.

[39] Meyer, Albert R., and Mitchell Wand. 1985. Continuation
semantics in typed lambda-calculi (summary). InLogics of

programs, ed. Rohit Parikh, 219–224. Lecture Notes in Com-
puter Science 193, Berlin: Springer-Verlag.

[40] Moggi, Eugenio. 1991. Notions of computation and monads.
Information and Computation93(1):55–92.

[41] POPL. 1988. POPL ’88: Conference record of the annual
ACM symposium on principles of programming languages.
New York: ACM Press.

[42] Queinnec, Christian. 1993. A library of high-level control
operators.Lisp Pointers6(4):11–26.

[43] ———. 2000. The influence of browsers on evaluators or,
continuations to program web servers. In [33], 23–33.

[44] ———. 2001. Inverting back the inversion of control or,
continuations versus page-centric programming. Rapport
de Recherche LIP6 2001/007, Laboratoire d’Informatique de
Paris 6.

[45] Queinnec, Christian, and Bernard Serpette. 1991. A dynamic
extent control operator for partial continuations. InPOPL ’91:
Conference record of the annual ACM symposium on princi-
ples of programming languages, 174–184. New York: ACM
Press.

[46] Sabry, Amr, and Matthias Felleisen. 1993. Reasoning about
programs in continuation-passing style.Lisp and Symbolic
Computation6(3–4):289–360.

[47] Shan, Chung-chieh. 2004. Delimited continuations in natural
language: Quantification and polarity sensitivity. In [51], 55–
64.

[48] Sitaram, Dorai. 1993. Handling control. InPLDI ’93: Pro-
ceedings of the ACM conference on programming language
design and implementation, vol. 28(6) ofACM SIGPLAN No-
tices, 147–155. New York: ACM Press.

[49] Sitaram, Dorai, and Matthias Felleisen. 1990. Control delim-
iters and their hierarchies.Lisp and Symbolic Computation
3(1):67–99.

[50] Sumii, Eijiro. 2000. An implementation of transparent migra-
tion on standard Scheme. InProceedings of the workshop on
Scheme and functional programming, ed. Matthias Felleisen,
61–63. Tech. Rep. 00-368, Department of Computer Science,
Rice University.

[51] Thielecke, Hayo, ed. 2004.CW’04: Proceedings of the 4th
ACM SIGPLAN workshop on continuations. Tech. Rep. CSR-
04-1, School of Computer Science, University of Birming-
ham.

[52] Thiemann, Peter. 1999. Combinators for program generation.
Journal of Functional Programming9(5):483–525.

108

