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Abstract uations are managed explicitly as values at all times. Second, the

underlying control flow of a program can be treated in terms of con-
Delimited control operators abound, but their relationships are ill- tinuations. Scheme providesll-with-current-continuation
understood, and it remains unclear which (if any) to consider canon- (hereaftercallicc ) to access these implicit continuations as first-
ical. Although all delimited control operators ever proposed can be class values [35]. Implicit continuations can be made explicit by
implemented using undelimited continuations and mutable state,a CPS transform on programs; explicit continuations can be made
Gasbichler and Sperber [28] showed that an implementation thatimplicit by a correspondinglirect-styletransform [7, 14, 15, 46].
does not rely on undelimited continuations can be much more ef-
ficient. Unfortunately, they only implemented Felleisetostrol A delimited(or composableor partial) continuation is a prefix of
andprompt [18, 19, 21, 22, 49] and (from there) Danvy and Filin-  the rest of the computation, represented by a delimited part of the
ski's shift andreset [11-13], not other proposed operators with  context of the current expression being evaluated. For example, in
which an expression may capture its context beyond an arbitrary the program
number of dynamically enclosing delimiters.

(cons 'a  [(cons 'b (cons 'c '())) D

We show thashift andreset can macro-expressontrol and . . o L
prompt , as well as the other operators, without capturing undelim- the continuation ofcons 'c ’()) , as delimited by the square
ited continuations or keeping mutable state. This translation is pre- brackets, is tacons the symbolb onto the intermediate result.
viously unknown in the literature. As a consequence, research on This delimited continuation is represented by the delimited context
implementingshift  andreset , such as Gasbichler and Sperbers, [(cons b ) .
transfers to the other operators. Moreover, we treat all these opera- ] ] ] o o
tors by extending a standard CPS transform (defying some skepti- Delimited continuations, like undelimited ones, can be explicit (in
cism in the literature whether such a treatment exists), so they canCPS code) or implicit (in direct-style code). Since Felleisen’s work

be incorporated into CPS-based language implementations. [18, 19], many control operators have been proposed to access im-
plicit delimited continuations as first-class values. A typical pro-
1 Introduction posal provides, first, some way to delimit contexts, and second,

some way to capture the current context up to an enclosing delim-
The continuationis the rest of the computation, represented by the It€r- For example, Danvy and Filinski [11-13] proposed two control
contextof the current expression being evaluated. For example, in OPeratorshift  andreset , with the following syntax.
the program

Expressions E := .. | (shift f E) | (reset E) (1)
(cons "a (cons 'b (cons 'c '()))) Contexts are captured tshit and delimited byreset . More
the continuation ofcons 'c '() is to cons the symbob, then specifically,shift ~ captures the current context up to the nearest
the symbola, onto the intermediate result. This contin'uation is dyqarmcally enclosmgeset. , replaces |ab0rt|verW|’gh ;he empty
represented ’by the contefeons ‘a (cons 'b _')) where is a delimited contexf_], and bindd to the captured delimited context

hole waiting to be plugged in as a functional value. For example, the program

) . L . (cons 'a (reset (cons 'b
Continuations can exist in a program at two levels. First, code may (shift  (cons 1 (f (f (cons ‘c 'O
be written incontinuation-passing styl€CPS), in which contin-

evaluates to the lisla 1 b b ¢) , becauseshift bindsf to the
value (lambda (x) (reset (cons 'b Xx))) , which represents
the delimited contexf(cons 'b _) ] captured byshift . At the
same timegshift also removes that context from evaluation—in
other words, iabortsthe current computation up to the delimiting

Permission to make digital or hard copies, to republish, to post on servers or to redis- reset —so the resultisnda b 1 b b ¢)
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To otherwise copy or redistribute requires Continuations have found a wide variety of appllcatlons. Delimited

prior specific permission. continuations, in particular, have been used in direct-style repre-
Fifth Workshop on Scheme and Functional Programm@ptember 22, 2004, Snow- sentations of monads [23-25], partial evaluation [8, 17, 26, 38, 52],
bird, Utah, USA. Copyright 2004 Chung-chieh Shan. Web interactions [29, 43, 44], mobile code [50], the CPS transform
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itself [11-13], and linguistics [3, 47]. However, the proliferation The rest of this paper is structured as follows. Section 2 introduces

of delimited control operators remains a source of confusion for the static control operatohift andreset , and their dynamic

users and work for implementors. Even though all delimited control counterparts. Section 3 expresses dynamic control in terms of static

operators in the literature can be implemented usafifgc  and control with recursive continuations. Section 4 then concludes and

mutable state, we would prefedaectimplementation—thatis,an ~ mentions additional related work.

implementation that does not rely on undelimited continuations—in

hope of reaping the efficiency gains recently shown by Gasbichler 2 A tale of two resets

and Sperber [28] with their direct implementation. Unfortunately,

Gasbichler and Sperber only implement Felleisaoigrol ~ and Danvy and Filinski'shift andreset [11-13] can be defined op-

prompt [18, 19] and (from there) Danvy and Filinsksift ~and erationally as well as denotationally. Operationally, we can specify

reset [11-13], not other proposed operators that allow an expres- transition rules in the style of Felleisen [18]:

sion to capture its context beyond an arbitrary number of dynami-

cally enclosing delimiters [30—32, 45]. Although it is clear that the M(reset V)] > M|V] (2

latter operators can macro-expretise former ones in pure Scheme M((reset  C|(shift f E)])] > M(reset  E')]

without calllcc  or set! , the converse “seems not to be known” whereE’ = E{f + (lambda (x) (reset cx) } ()

[30, 31]. Hence it is unclear how an improved implementation of

shift andreset , such as Gasbichler and Sperber’s, can help us HereV stands for a valueC stands for an evaluation context that

implement other control operators better. does not cross eset boundary, andM stands for an evaluation
context that may crossraset boundary:

Because the “static” control operatatsft andreset correspond Values V = (lambda (x) E) |- (4)
closely to a standard CPS transform [12], to macro-express other, B

“dynamic” control operators in terms ehift andreset is to ex- Contexts Cllz=[]]Cl[IBI|CUV [N (5)
tend that transform. In the literature, dynamic control operators like Metacontexts M[ ] ::=C[ | | M[(reset C[ ])] (6)
control  andprompt are often treated, as if by necessity, using a . .
non-standard CPS transform in which continuations are represented?enetationally, we can specify a CPS transform to map programs
as sequences of activation frames [21, 22, 42]. By contrast, we that useshiit - andreset to programs that do not. The core of this
show in this paper that a standard CPS transform suffices, as ondransform is shown in Figure 1; its first three lines are wk:at this
might expect from Filinski’'s representation of monads in terms of P&Per means by “a standard (call-by-value) CPS transférm”.

shift andreset [23-25] (see Section 3.1). What distinguishes dy-
namic control operators is that the continuatioreisursive Thus,

in a language supporting recursion like (pure) Scheshiéé, and

As Danvy and others have long observed [10], the syntactic defi-

nitions above of contexts and metacontexts are not rabbits out of
reset can macro-express the other control operators after all. As a hats: Ra.ther, contexts are defunctionalized representations of the
consequence, any direct implementatiostoft  andreset , such continuation functions in Figure 1.

as Gasbichler and Sperber’s, gives rise to a direct implementation Contexts of the form:  represent continuations of the form:

of the other operators. Moreover, because our translation of all [] (lambda (v) V)

these operators extends a standard CPS transform, they can be in-

corporated into CPS-based language implementations. Cl([]B)] (lambda (f)
(E’ (lambda (x) ((f x) cH))
Cl(v [D] (lambda (x) (V' x) C)
lB_y “‘macro-express” we mean Felleisen’s notionlof macro ex-  gimilarly, metacontexts (such @sset (f (reset (g LD )
pressibility [20], but we surround each program bytaplevel are defunctionalized representations of the implicit metacontinua-
construct to mark its syntactic top level. We also impose an ad- tjons in Figure 1—that is, of the continuations that can be made
ditional requirement: given any space consumption barbere explicit by CPS-transforming the right hand side of Figure 1.

must exist another space consumption bosipsuch that every pro-
gram withinstranslates to a program withg This requirementis  The CPS transform relates not just terms but also types between the

intended to rule out o _ ~ source and target languages. If the source program is a well-typed
e implementing delimited continuations by capturing undelim-  term in, say, the simply-typed-calculus, then the output of the
ited ones; and transform is also well-typed in the simply-typaecalculus: every

* keeping mutable state by modeling memory in a single storage source type at the top level or to the right of a function arrow is
cell, whichshift andreset can simulate (while accumulat-

ing garbage in the simulated store). 3To help the exposition below, these transition rules do not han-
Space consumption can be defined along the lines of Clinger [5], dle the case when shift  term is evaluated with no dynamically
for an abstract machine such as Biernacka et al.'slfifr and enclosingreset . Danvy and Filinski’s original proposal amounts
reset [4]. here to enclosing the entire program in a top-leesét .

2A reviewer suggests that Gasbichler and Sperber’s technique  4The right-hand-sides fahift andreset in Figure 1 contain
can be easily adapted to other control operators. For example, tonon-tail calls, as do (18-19) in Section 3.1 below. Thus these equa-
implement the (dynamichift0  operator below, it seems that one tions do not really constitute a CPS transform, only a continuation-
need only replace the reset flag in every frame with a reset count,composingstyle transform that extends a standard CPS transform
and decrement it after shifting. Given how many delimited control on the pure\-calculus. In particular, the output of this transform
operators have been (and will be?) proposed—severalcliie is sensitive to the evaluation order of the target language. Danvy
[30, 31], are related but not identical to the four considered in this and Filinski [12] regain CPS by CPS-transforming the output of
paper—macro-expressibility results like ours are attractive becausethis transform a second time. We can do so but need not, since by
they do not require changing the Scheme implementation at all be- Section 3.2 our equations’ right-hand-sides will be in CPS again,
fore new operators can be introduced. with all arguments pure.

100



X = (lambda (c) (c X))
(lambda (x) E) = (lambda (c) (¢ (lambda (x) E))
(E1 Ep) = (lambda (c) ( Ep (lambda () (  Ez (lambda (x) ((f x) c))))
(reset E) = (lambda (c) (c ( E (lambda (v) V))))
(shift f  E) = (lambda (c) (let ((f (lambda (x) (lambda (c2) (c2 (c X))))))

(E (lambda (v) v))))
Figure 1. A continuation-passing-style transform forshift  and reset

mapped to a type of the forft — o) — wp, wherew; andwy, evaluates td¢a) ,> whereas the program
areanswer type$39]. Moreover, the type system of the target lan- ’ ’
guage can be regarded as a type system for the source language. For (reset (let ((y (control f (cons "a (f '()))))

example, the expression (control g y)))
: o evaluates td) .6 Sitaram'sfcontrol ~ [48] is closely related to
(shift £(if (f "a) 1 2) control  in nature. These authors referraset asprompt , run ,

translates to a term of the tygBym — Bool) — Int. Inwords, the ~ #: Or%

expression can appear in a context that produces a boolean whenl_heshifto operator captures a delimited context it does

plugged with a symbol, and produce an integer as the final an- b he delimii le. th
swer. We can take such descriptions as the types of source termsPUt rémoves the delimitingset . For example, the program

as Danvy and Filinski [11] do. They write the typing judgment (reset (cons 'a

-, Bool F (shift f (if (f 'a) 1 2)) ‘Sym,Int (7) (reset (shift T (shift g "0)))
) ) ] evaluates t¢a) ,’ whereas the program

to mean that the expression behaves locally like a symbol, butincurs

a control effect that changes the answer type fRwol to Int. (reset (cons 'a

(reset (shifto f (shift0 g '())))))

The transition rule (3) foshift mentionsreset twice on its right
hand side. On the first line, theset that delimits the captured
context is preserved after the capture, so the context from a sin-
glereset outward is protected from manipulation by any number
of dynamically enclosedhift invocations. Informally speaking,
reset makes any piece of code appear pure to the outside, that is
devoid of control effects. On the second line, the captured context
is surrounded byeset , sof is bound to a pure function.

evaluates t¢) .8 Danvy and Filinski [11] consider thishift0  op-
erator briefly. Also, Hieb and Dybvig'spawn [32] can be thought
of as areset that, each time it is invoked to insert a new delimiter,
creates a specifhift0  operator for that new delimiter.

"The control0  operator is likecontrol  but removes the delimit-

5The reduction sequence begins:
(reset (cons 'a

Neither occurrence akset on the right hand side of (3) is acci- ((lambda ()
dental; they are necessary for the operational semantics to match (reset (let ((y x)) (shift g y))))
the transform in Figure 1. Despite the appeal of this match, many '0)
other delimited control operators have been proposed (historically, (reset (cons 'a
both before and after Danvy and Filinski's work) that remove one (reset (let ((y '0)) (shift g y)))))
or both occurrences aéset on the right hand side of (3). Three (reset (cons 'a (reset (shift g '())))
such variations oshift are possible, namelgontrol , shift0 (reset (cons 'a (reset ’())))
andcontrol0  below. Hereshift f  introduces aeset under theambda , which stops
shift g from capturingcons 'a .
Mi(reset C[(control f  E)])] > M[(reset E')] The reduction sequence begins:
whereE’ = E{f + (lambda (x) C[x])} (8) (reset (cons 'a
M[(reset C[shifto f  E)))] > M[E/] ((lambda (x)
whereE’ = E{f + (lambda (x) (reset Cx])) } (9) ,o)gl)et ((y )) (control g y)))
M[(reset Cl(control0 f  E)])] > M[E’] (reset (cons 'a
whereE’ = E{f + (lambda (x) C[x])} (10) (let ((y '())) (control g ¥))))

(reset (cons 'a (control g '())))

Felleisen'zontrol  operator [18, 19, 21, 22, 49], the first delimited (reset '()) ’
control operator in the literature, captures a delimited context with- Herecontrol £ allowscontrol g to capturecons ‘a .

out surrounding it witlteset , sof may operate on the contexts in The reduction sequence begins:
which it is subsequently invoked. The difference betwsft (reset (cons 'a (reset (shift g '()))))
andcontrol  can be observed as follows: the program (reset (cons ‘a (reset ()
8The reduction sequence is:
(reset (let ((y (shift f (cons 'a (f '()))))) (reset (cons 'a (shift0 g ()
(shift g y))) 0

101



ing reset . Itis essentially Gunter et al.pto [30, 31] stripped Crary et al. [6, 27], this paper showsjui-recursivetypes, butiso-
down to one prompt variable, and closely related to Queinnec and recursivetypes can be used too.

Serpette’splitter [45].

Described operationally as in (8-10), these variationsstofn 3 Recursive continuations
seem like minor changes with little sense of purpose. Because
addingreset is easycontrol andshift0  can obviously macro-
expresshift , andcontrol0 can macro-express them all, without
calllcc  or mutable state. The opposite direction—whethdt

can simulate any of itseset -removed cousins, for example—
“seems not to be known” to Gunter et al. [30, 31]. Since no version
of shift is clearly “right”, Gunter et al. choose to takentrol0

as primitive.

In this central section of the paper, we treat dynamic control oper-
ators by extending the standard CPS transform, and by translating
them intoshift andreset . The key to these treatments is to rep-
resent delimited contexts as functions whose types are recursive:
When a delimited context is captured with a dynamic control oper-
ator, then invoked, it may take control over the delimited context at
the invocation site. Hence, the former context must take the latter
context as an argument in our CPS transform. Roughly speaking,

. . . L . then, the type of contexts must mention itself, that is, be recursive.
Concomitant with the apparent difficulty of usisgift to simu-

late the other control operators is an apparent difficulty of devising
denotational semantics for these operators under a standard CP
transform. More precisely, unlike withift | it is unclear how to
translatecontrol , shift0 , or control0  away using a transform
that coincides on purk-terms with the first three lines of Figure 1,

et us firstreview delimited contexts capturedshift andreset .

he CPS transform in Figure 1 represents a delimited context as a
continuation, that is, a function of tyme— w. Danvy and Filinski
identify T with the type of the intermediate result (that is, the hole in

h d : ion f . dthe context) andv with the type of the answer (that is, the context
where contexts are represented as continuation functions. Instead, - hugged). For comparison with other control operators below,
semantics for these operators in the literature either rely on com- .« qefine the types

plex mutable data structures (in essence defining the operators by
implementing them in Scheme) or represent contexts as sequences Context TwW = T— W, (12)
of activation frame$, termedabstract continuation§21, 22, 42].

Standard continuation semantics is declared “inadequate” [21] and Answer @ = O, (13)

“insufficient” [22],10 ascontrol s said to “admit no such simple  such that

static interpretation” [13]. Such claims are surprising in hindsight

of Filinski's representation of monads in termsshift ~ andreset ContextTw = T— Answer . (14)

[23—25]—surely even includingpntrol0  in a language would not .

disqualify it from Moggi’s notions of computation [40]? To take an example, thg delimited contéxt 1 _) ] takes the type
Context Int Bool (or equivalently)nt — Bool) when captured with

Danvy and Filinski [11-13] informally classify theshit and ~ SNift ,because plugging the holewith an integer gives an answer

reset  operators adexical and static, and other delimited control  thatis & boolean. In other words, the function

operators such amntrol asdynamic They use these words to (lambda (x)

draw an analogy to lexical versus dynamic scoping for variables: (reset (< 1 X))

roughly speakingshift andreset , unlike the other operators, can

be defined and implemented without traversing arbitrarily deeply (which represents that context, as capturedshift ) maps in-

into data structures at run-time. The next section shows that, astegers to booleans. For another example, the delimited con-
soon as we allow traversing arbitrarily deeply into data structures text [(let ((y _)) (shift g (< 1 y))) ], when captured by

at run-time, dynamic control operators can be treated with the samegpitt ~ also has the typ€ontext Int Bool. In other words, the
transform as static ones. That is, continuation semantics is suffi- fnction

cient after all, as long as the continuation can be recuf<ive.

(lambda (x)
Our development below of recursive continuations is guided by re- (reset (let ((y x)) (shift g (< 1 y))))
cursive types. For example, df is a type, then the typkist a of
singly-linkeda-lists can be defined by (which represents that context, as capturedstiff ) also maps
integers to booleans. In fact, these two contexts capturetitby
Lista = 1+axlLista, (11) are observationally equivalent, becausesttiit g  above has only

the empty delimited context] to capture.
where 1 is the unit type and constructs product types. For brevity, Py X P

we take the unfolding of a recursive type to give not just isomorphic
but in fact equivalent types. For example, (11) states an equation3-1 ~control

between types, not just an isomorphism. To use terms coined by
The context[(let ((y _)) (control g (< 1 y))) | captured

1
90r an algebra thereof. with control  is not equivalent td(< 1 _) |, because the function

10A reviewer states that these declarations are objections to the
. -2 . ; - ; (lambda (x)
non-tail calls in Figure 1 (as continuation semanticssfoit and (et ((y X)) (control g (< 1 y)))
reset ) and (18-19) in Section 3.1 (as continuation semantics for y g y

control  andprompt ). However, see footnote 4. (which represents the first context, as captureddmyrol ) wipes

'0One way to see the connection between dynamic control op- out its surrounding delimited context when invoked, whereas the
erators and recursive continuations may be to observe how the fol-fynction

lowing program enters an infinite loop.
(prompt (begin (control f (begin (f 0) (f 0))) (lambda (x)
(control f (begin (f 0) (f 0)))) (< 1x)
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(which represents the second context, as capturedryl ) does ThusContext’ can be written in terms ofontext! Hence, delim-

not. In general, when a delimited context capturedctwtrol ited contexts captured kopntrol  can be represented as ordinary,
is invoked, it may further capture the surrounding delimited con- if recursive, continuations. The equations below extend the first
text (up to the nearest dynamically enclosieget ) at the point three lines of Figure 1 toontrol . It maps every source type

of invocation. Thus a delimited context captureddoytrol , un- at the top level or to the right of a function arrow, to a type of the
like one captured byghift , is not a function from an intermedi-  form (1 — Answer’ ®) — Answer’ w. To distinguish theeset for

ate result (with which to plug a hole) to a final answer. Rather, a control here from theeset for shift above, we writgorompt
control  -captured context can be thought of as a function from an instead ofreset .
intermediate resuland any surrounding delimited context a fi-

nal answer. The surrounding context may be the empty coptext (prompt  E) = -~
(if the captured context is invoked immediately withaset ) or (lambda (c) (c ((  E send) #)) (18)
not empty. Accordingly, we let a delimited context captured by {conrol T E) =
control whc/)se hole is of type and answer is of type take the (lambda (c1)
type Context’ T w, where (lambda (mc1)

Context' Tw = T— Maybe(Context’ ww) — . (15) (let ((f (lambda (x)

) . . ) (lambda (c2)
In this recursive type definitioiMaybe a means either an-value (lambda (mc2)
or the special toketif , like the discriminated union typédaybe a (((compose ¢1 mcl) x)
in Haskell. We uséf to represent the empty surrounding context. (compose c2 mc2)))))))
The functionsend below plugs an intermediate answer (of (E send) #0)) (19)
typew) into a delimited contextc (of type Maybe (Context’ w w)) Because this transform extends a standard call-by-value CPS trans-
by callingmcwith v and the trivial delimited contexf . If mcis the form on the purex-calculus, it shows how to treabntrol and
special toker#f , then we are plugging into the empty context, S0 prompt as operations in the continuation monad (with answer type
the final answer is just. Answer’ w). Then, becausshift andreset expresses all op-

. erations in the continuation monad, we can definatrol and
(define (send v) prompt in direct style as macros in termsgfift  andreset .

(lambda (mc) (if mc ((mc v) #f) v)))

This function is of typeContext’ w w: it is itself a delimited con- (de(ir;ﬁ;zmtaéspr(c))mpt

text, namely the empty one. If our target language lets us compare
values againssend (even intensionally usingg?, say), then we (Ce) ((reset (send e)) #)
can do so rather than comparing values agaihstand drop our

; . define-syntax control
use ofMaybe. That is, we could implemersend as ( Y

(syntax-rules ()

(define (send V) (Cte
(lambda (mc) (shift c1

; lambda (mcl
(if (eq? send mc) v ((mc v) send)))) ( (et ((f( (Iam)b da (X

but do not, for clarity. (shift c2

(lambda (mc2)
When two shift -captured contexts are composed as functions (((compose c1 mcl) x)
at the source level, the result corresponds to concatenating con- (compose ¢2 mc2)))))))
tinuations by function composition in the target language. By ((reset (send e)) #))))

contrast, to concatenatentrol -captured contexts of the recur- _
sive type defined in (15), we define a recursive function, of type 1hese source-level macros correspond directly to the target-level

(Context’ T wx Maybe (Context” w w)) — Context’ T w equations (18-19), except:
(define (compose ¢ mcl) e Where the target-level equations abstract over a continua-
(if mcl (lambda (v) tion argument, the source-level macros sisi¢  rather than
(lambda (mc2) lambda .
((c v) (compose mcl mc2))) e Where the equations pass the continuatiend to E, the
c)) macros sayreset (send  E)) , so as to plac& in the de-

According to (15), the typ€ontext’ T w is a function type, and limited context(send ) ].

only appears in its domain, not codomain. In other words, a context thisg implementation afontrol  andprompt uses neithecallicc

captured bycontrol  whose hole type is has the function type 5 mytable state; in particular, it does not capture any continuation
of at-continuation, just like delimited contexts capturedshit beyond the outermost delimitingompt .

except for the recursive answer typeswer’ w defined by

Answer’ @ = Maybe (Context’ 0 w) — Another way to view the same definitions in hindsight is to rec-
, ognize that a denotational semantics given by Felleisen et al. [21,
= Maybe (0 — Answer’ ) — , (16) Section 4] encodesontrol  andprompt in a monad that maps each
such that typet to the type(T — Answer’ ) — w. This monad is not the con-
, , tinuation monad, because the answer typeswer’ w and w are
Context T = T— Answer different; hence, Felleisen et al.’s equations for their denotational
= Context T (Answer’ ). (17) semantics do not give a standard CPS transform. Nevertheless, we
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can still use Filinski's representation of monads in termshdf
andreset [23-25] to represertontrol  andprompt —essentially

do not.

as above, in fact. As an anonymous reviewer hints, this observation Appendix C of Danvy and Filinski’s technical report [11] consid-

is one way to show our definitions to correctly implemeurttrol
andprompt .

Sitaram and Felleisen [49] implemenontrol  and prompt in
terms ofcallcc  in Scheme. That implementation uses both
callcc  and mutable state. Our implementationcofitrol and
prompt usingshift andreset can be composed with Filinski's
implementation ofhift andreset usingcalllcc [23] to yield

a more modular implementation a@bntrol  and prompt using
call/cc Sitaram and Felleisen’s implementation maintains a
global, mutablerun-stack The run-stack is comprised @ub-
stacks one for each dynamically actiy@ompt . Each sub-stack

is a list of invocation points (that is, undelimited continuations cap-
tured bycalllcc ). These data structures can be correlated with
our implementation: The run-stack is a sequenceraf functions

(of type Maybe (Context’ w w)), one for each dynamically active
prompt . Eachmc function is a sub-stack, the result of concatenat-
ing control  -captured contexts usirapmpose .

3.2 shift0

Whenshift0O  captures a delimited context, it does not replace it
with the trivial delimited context ashift  does. Instead, it removes
the captured context along with its delimitingget , exposing the
next-outer delimited context up to the next-nearest dynamically en-

closingreset . With shift0  in the languagereset is not idem-
potent:(reset  E) is not equivalent tdreset (reset E)) , be-
cause eacteset only “defends against” orghift0 . For example,

the program

(reset (cons 'a
(reset (shiftd f (shiftd g '()))))

evaluates tg) , but the program

(reset (cons 'a
(reset
(reset (shift0 f (shift0 g '()))))))

evaluates tda) .

Becauseshift0  removes the delimitingeset
delimited context, the context

when capturing a

[(let ((y )
(shiftd f (shift0 g (< 1 V) ]
captured wittshiftd  is not equivalent to the contexts
[(let ((y ) (shift0 g (< 1Y) ]
(<1)]
captured wittshift0 . That is, the function
(lambda (x)

(reset (let ((y x))
(shifto f (shift0 g (< 1 y)))))

wipes out its surrounding delimited context when invoked, whereas
the functions

(lambda (x)

(reset (let ((y x)) (shift0 g (< 1))
(lambda (x)
(reset (< 1 x)))

104

ers this variation oghift  briefly. They model it denotationally by
passing around a list of delimited contexts, which can be thought of
as a sequence of activation frames, except each frame corresponds
to areset rather than a function calf In our formulation, a de-
limited context captured bshift0  whose hole type is and whose
answer type iso has the type&ontextg T w, where
ContextoTw = T — List(Contextg ww) — w.  (20)
In this recursive type definition,ist o means a singly-linked list
of a-values, either @ons cell or the empty lis{) . A list of type
List (Contextg w w) contains delimited contexts from innermost to
outermost, separated by control delimiters.

The functionpropagate below plugs an intermediate answefof
type w) into a list of contextdc (of type List (Contextg w w)) by
calling the head ot with v and the tail ofic . If ¢ is empty, then
the final answer is simply.

(define (propagate V)
(lambda (Ic)
(if (null? Ic) v

(((car Ic) v) (cdr Ic))))

This function is of typeContextp w w: it is itself a delimited con-
text, namely the empty one.

Like the typeContext’ T win Section 3.1Contextg T w is a func-
tion type in whicht only appears in the domain. Hence a delimited
context captured bghift0  is just like one captured kshift , ex-
cept the answer typAnswerg w of the continuation is recursive,
defined by

Answerg @ = List(Contextg W w) — w
= List(w— Answerg W) — , (21)
such that
Contextg T = T— Answerg ®
= Context T (Answergp ). (22)

ThusContextg can be written in terms dfontext. Therefore, just
as withcontrol , delimited contexts captured tspift0  can be
represented as ordinary continuations. Following the Appendix C
mentioned above, the equations below extend the first three lines
of Figure 1 to a CPS transform fehift0 . It maps every source
typeT, at the top level or to the right of a function arrow, to a type
of the form (T — Answerg w) — Answerg w. To distinguish the
reset for shift0  here from theeset for shift above, we write
reset0 instead ofreset .

(reset0  E) =

(lambda (c)
(lambda (Ic)

(( E propagate) (cons ¢ Ic)))) (23)

1230hnson and Duggan [34] add control facilities to the program-
ming language GL that provide power similar to thatsbift0
andreset , but they make each function call delimit the context
(like Landin’s SECD machine [9, 10, 37]), so their frames do cor-
respond to function calls.



(shift0 f E) = for control —it also has the type

(lawgnqlzdg:l()lc) (Contexty T wx Maybe (Contexty ww)) — Contexty T . (28)
(let (@ (Iambdzag%da ) Finally, we can usesend-propagate ~ and compose to define an
(lambda (c) ordinary CPS transform focontrol0 . Here we writeprompt0
(c1 % (cons c2 1)) instead ofreset to mean theeset for control0
(( E (car lo)) (cdr Ic)))) (24) (prompt0 E) =

As in Section 3.1, these equatidfsan be turned into a direct im- (lawgn(izdg:)(mc)
plementation ofhift0  andreset0 in terms ofshift andreset (lambda (Ic)
tsrgg:eneither captures undelimited continuations nor keeps mutable (( E send-propagate) #)

) (cons (compose ¢ mc) Ic))))) (29)
3.3 control0 (control0 f  E) =

(lambda (c1)
The controld  operator removes both occurrencesreget on (lambda (mc1)
the right hand side of (3); it combines the dynamic properties of (lambda (lc)
control  andshiftd . It is thus not surprising that we can treat (let ((f (lambda (x)
controld  with recursive continuations and the CPS transform by (lambda (c2)
combining the ideas from Sections 3.1-2. (lambda (mc2)
(((compose c1 mcl) x)

A delimited context captured bgontrol0 , with hole typet and B (compose c2 mc2)))))))
answer typen, has the type ((( E (car Ic)) #f) (cdr Ic)))) (30)

Contexty Tw = T— Maybe (Contexty ww) — This CPS transform maps every source typeat the top level

List (Context}y @ ) — (25) or to the right of a function arrow, to a type of the forfn —

Answerp w) — Answerg . Again, these CPS equations can be
in which T only appears in the domain. A delimited context cap- turned into an implementation abntrol0  and prompt0 using
tured bycontrol0 is thus just like one captured Isift ~ with the shit andreset that neither captures undelimited continuations
recursive answer type nor keeps mutable state.

Answerg 0 = Maybe (Contexty w ) —

. , 4 Conclusion and related work
List (Contexty 0 W) —

= Maybe (w— Answer 0) — This paper presents the first CPS transform for dynamic delimited
List (0 — A ) — 26 pontrol operators, including Felleisertentrol  andprompt , that
ist (@ — Answerg @) — @, (26) is consistent with a standard CPS transform. We have shown that
such that Danvy and Filinski's static operatoshift —andreset are just as
Contety @ = - Answer cupresive as ynaic ones For & delited conol operator o be
= Context T (Answer( (). 27

Now that we know how to implement dynamic operators in terms
of shift andreset without capturing undelimited continuations or
keeping mutable state, direct implementationshiff andreset

like Gasbichler and Sperber’s [28] give rise to direct implementa-
tions of dynamic operators. Moreover, because our CPS transform
extends a standard one, it can be incorporated into CPS-based lan-
guage implementations.

Thus Context can be written in terms o€ontext. Informally
speaking, theMaybe part of the types above keeps track of the
delimited context within the nearest dynamically enclosisgt |,

and theList part keeps track of the delimited contexts beyond that
reset .

The trivial delimited context of typ€ontexty w w is the function

send-propagate  below, which combinesend andpropagate . Besides explicating dynamic control operators, recursive continu-

ations are also useful in practical programming. For example, the

define (send-propagate v : > ; X ; .
( ( propag ) iterative interaction pattern between a coroutine and its environment

(lambda (mc)

(if mc ((mc v) #) is reflected in a recursive continuation, specifically its recursive an-
(lambda (Ic) swer type [25, Section 4.2], which can be depicted graphically as a
- flowchart. Two special cases of such interactions are:
(if (null? Ic) v
((((car o) v) #) e the interaction between a Web server and user agents [16, 29,
(cdr Ic)))) 43, 44] and
To compose delimited contexts capturedcbytrol0 , we can sim- e the interaction between a cursor iterating over a collection and
ply use the code farompose above, because—although itis created its client [36], as epitomized in the classic same-fringe prob-
lem.
BNow in CPS; see footnote 4. Expressions like
(( E propagate) (cons c Ic)) Another potential application of recursive continuations lies in
may appear to contain a non-tail call, but should be regarded as aBalat et al.’s type-directed partial evaluator for thealculus with
curried call with two arguments. products and sums [2], which computes normal forms\feerms
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under Bn-equivalence. To normalize terms that use sums, Balat [11] Danvy, Olivier, and Andrzej Filinski. 1989. A functional ab-
et al.'s algorithm uses Gunter et akigpto operator [30, 31], rather

thanshift
et al.’s algorithm evaluates a term, it keeps a list of possible scope

as in previous work by Balat and Danvy [1]. As Balat

locations at which futurease expressions may be inserted, in the
form of prompts forcupto . (By contrast, Balat and Danvy’s earlier

algorithm usingshift

only considers one scope location at which

to insert acase expression.) Iftupto is replaced byshift ~ with
a recursive continuation, then that list of prompts would be pleas- [13]
ingly identified with the stack of control points that Gunter et al.
use to implementupto in the first place. A direct implementation
of cupto orshift would also make the algorithm more efficient.
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