
87

Mobile Reactive Programming in ULM

Stéphane Epardaud
Inria Sophia-Antipolis

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

France
Stephane.Epardaud@sophia.inria.fr

Abstract

We present the embedding of ULM [7] in Scheme and an imple-
mentation of a compiler and virtual machine for it. ULM is a core
programming model that allows multi-threaded and distributed pro-
gramming via strong mobility with a deterministic semantics. We
present the multi-threading and distributed primitives of ULM step
by step using examples. The introduction of mobility in a Scheme
language raises questions about the semantics of variables with re-
spect to migration. We expose the problems and offer two solu-
tions alongside ULM’s network references. We also present our
implementation of the compiler, virtual machine and the concurrent
threading library written in Scheme.

1 Introduction

Today’s networks of computers have nothing to do with what we
had twenty years ago. While there were very few of them back
then, it is now very hard not to be surrounded by more than one
computer, practically always connected to some sort of network.
And if networks and computers have drastically evolved and mul-
tiplied, it is natural that programming languages evolve to exploit
their number and interconnections.

The widespread clustering of processors have marked the ap-
pearance of parallel multi-threading, while the connectivity phe-
nomenon has brought along distributed programming. Some pro-
gramming languages nowadays include these features right along-
side the+ andset! operations.

However, there are many ways to do multi-threading, and parallel
execution is but one of them. Many people accept the common idea
of preemptive non-deterministic scheduling and the variety of prob-
lems that are bundled along. Deadlocks, race conditions and syn-
chronisation problems are but a few problems that one experiences
while taking the perilous learning experience of what we often call
native threads. Debugging a non-deterministic program is a chal-
lenging feat, especially since running it on a single processor does

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming.September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 INRIA.

not help.

Reactive programming offers the ability to execute multi-threading
programs in a concurrent and deterministic way. No more fancy
scheduling, surprising race conditions and synchronisation myster-
ies. Every execution of an otherwise multi-threading program runs
according to a precise semantics: the same level of predictability
expected from+ or set!.

Distributed programming, much like multi-threading programming
has many variants, all of them bearing the unreliability of networks.
From communication breakdowns to computer unavailability, the
networking part of distributed computing faces non-determinism
much in the same way parallel threads do. If distributed program-
ming techniques are to be incorporated into a deterministic lan-
guage, there has to be a way to isolate any non-determinism in safe
and well-known places.

ULM (Un Langage pour la Mobilit́e) is a set of reactive and dis-
tributed primitives written by G. Boudol that offers a determinis-
tic semantics for local execution. Following the GALS (Globally
Asynchronous Locally Synchronous) model, ULM offers concur-
rent deterministic multi-threading on each site, together with strong
thread mobility while isolating non-determinism.

This paper presents our implementation of a prototype interpreter
for a Scheme language augmented with ULM primitives. We intro-
duce the syntax of this new language along with illustrations of how
to use the ULM constructs in Scheme. We present the implications
of introducing mobility in a Scheme language and how we chose to
address them in a way that fits with ULM’s objectives. Rather than
detail the implementation of our working prototype, we explain the
global ideas behind the cooperative scheduling and the mobility of
threads.

In Section 2 we present the reactive aspect of ULM. In Section 3 we
introduce the mobility primitives, the problems arising from free
variables during migration, and the different types of variables we
offer as solution. In Section 4 we present an extended example
of mobility and multi-threading through agent interactions. The
implementation of our prototype compiler and virtual machine is
outlined in Section 5. We muse on future directions in Section 6,
compare our implementation with related work in Section 7 and
finally conclude in Section 8.

2 ULM Reactive Primitives

ULM is inspired by FairThreads [6], which is a reactive variant of
Esterel [8], an imperative synchronous language, but you need not



88

know these languages in order to understand ULM and no prior
knowledge will be assumed in this paper.

In reactive programs, execution time is divided in units calledin-
stants. An instant is a discrete time interval during which threads
are allowed to react. The basic idea is that during an instant, all
threads that want to run are allowed to run, until they all decide
to wait for the next instant (a form of cooperation), or are blocked
while waiting for something that is not going to happen during the
instant. When all threads are waiting or blocked, we go to the next
instant.

2.1 Threads

In order to present the ULM language, we will show some examples
of what you can do with it. First of all, we will present the basics
of multi-threading in ULM. Its threads are lightweight, cooperative,
not parallel but concurrent, do not have their own memory space,
and are scheduled in a deterministic fashion. They resembleevent
loopprograms, that do not need locks for synchronisation, but need
to cooperate at some points to let the other threads run.

Here are two threads that run concurrently (the example is ex-
plained below):

1: (define (make-printer-thread name)
2: (ulm:thread
3: (lambda ()
4: (let loop ()
5: (print name)
6: (ulm:pause )
7: (loop)))))
8: (make-printer-thread "A")
9: (make-printer-thread "B")

In this example we define a procedure (make-printer-thread)
that creates a new thread that will print its name, cooperate with
other threads, and keep doing that forever. We then (lines8-9) use
that procedure to create two threads: one that will print “A” and the
other “B”. The result is that “A” and “B” will be printed repeatedly
in that order forever.

The procedureulm:thread takes a thunk as parameter, creates a
thread that will execute this thunk, and schedules the thread to be
run later at the current instant. This program also illustrates that the
toplevel execution is in an implicit thread: when the toplevel has
finished execution, it implicitly terminates and lets other threads run
(in this case, the threads that print “A” and “B”). The concept of co-
operation is illustrated in this example with the call toulm:pause ,
whose effect is to wait for the next instant, explicitly allowing other
threads to execute. Callingulm:pause after each thread prints al-
lows the other threads to execute, and makes sure the calling thread
won’t be awakened until all the other threads are done for this in-
stant, which is when the next instant starts.

2.2 Signals

This example and its following explanation introduce the concept
of inter-thread communication:

1: (let ((relay (ulm:signal )))
2: (ulm:thread
3: (lambda ()
4: (print "Thread A starts and waits for B")
5: (ulm:await relay)
6: (print "Thread A resumes execution")))
7: (ulm:thread
8: (lambda ()
9: (print "Thread B starts and wakes up A")

10: (ulm:emit relay)
11: (print "Thread B now terminates"))))

In this example, we create asignal (ulm:signal returns a
new signal at line1) calledrelay which will serve as a synchro-
nisation and communication means between threads. A signal is
a sort of flag that is set to “not there” at the beginning of each
instant, and then is set to “present” (or any value, as we will see
later) as soon as someone emits it, until the next instant. This
allows threads to wait for a signal to be emitted (if it is not present
already), and to emit signals to wake up other threads. Here thread
A starts executing1, then waits for therelay signal (line5) to be
emitted, which implicitly allows threadB to run (since threadA is
waiting). ThreadB then runs, and emitsrelay (line 10), which
implicitly allows threadA to be awakened and rescheduled later
in the instant. Then threadB terminates and execution passes to
threadA (line 6), which then terminates.

Communication of values between threads is done in a classical
manner, through shared variables and synchronisation is ensured
via signals. The next version of our ULM interpreter will have an
object system in the form of mixins [9], and provide anEventmixin
that will serve as a signal with an associated value. The next sec-
tion will discuss the differences in communicating values between
threads when migration is involved.

2.3 Suspension

The first of the two main reactive primitives in ULM isulm:when ,
which introduces suspension. Suspension causes a program to be
suspended at each instant when a signal has not been emitted (to
put it differently: it allows a program to run only during instants in
which a signal is emitted).

We will now illustrate and explain suspension:

1: (let ((odd-signal (ulm:signal ))
2: (even-signal (ulm:signal )))
3: (ulm:thread
4: (lambda ()
5: (let loop ((even #t))
6: (if even
7: (ulm:emit even-signal)
8: (ulm:emit odd-signal))
9: (ulm:pause )
10: (loop (not even)))))
11: (ulm:thread
12: (lambda ()
13: (ulm:when odd-signal
14: (lambda ()
15: (let loop ()
16: (print "Odd instant")
17: (ulm:pause )
18: (loop)))))))

This program creates two signals:odd-signal andeven-signal

1Because of the deterministic semantics of scheduling, threads
are run in their creation order.



89

that will serve respectively for marking odd and even instants. The
first thread loops forever and emits alternatively theeven-signal
or the odd-signal at each instant. The second thread enters
suspension (line13): that is, it is allowed to run only when
odd-signal is present. At the beginning of each instant it will be
blocked untilodd-signal has been emitted, and only then will it
be allowed to run until the next instant. As soon asodd-signal
has been emitted, the second thread prints something and waits for
the next instant (lines16-17), which means it will be blocked again
until odd-signal is emitted again.

2.4 Preemption

The second main reactive primitive is weak preemption, which al-
lows a program to be given up at the end of an instant. Here we
introduce preemption and explain it below:

1: (define (run-n-instants n thunk)
2: (let ((kill-signal (ulm:signal )))
3: (ulm:thread
4: (lambda ()
5: (let loop ((i n))
6: (if (> i 0)
7: (begin
8: (ulm:pause )
9: (loop (- i 1)))

10: (ulm:emit kill-signal)))))
11: (ulm:watch kill-signal thunk)))
12:
13: (run-n-instants 3
14: (lambda ()
15: (let loop ()
16: (print "New instant")
17: (ulm:pause )
18: (loop))))

This example defines a procedure (run-n-instants) which
takes athunk and a number of instantsn as arguments. This pro-
cedure creates a thread that will wait forn instants (lines6-9) and
then emit akill-signal (line 10). Before that thread even starts,
the procedure will enter a preemption block onkill-signal in
which it will executethunk (line 11). The effect of this is that
thunk will be allowed to run during at mostn instants because
then the killer thread will emit thekill-signal which will cause
the execution ofthunk to be aborted at the end of thenth instant.

We then call (line13) run-n-instants in the implicit thread,
with a procedure that prints each new instant. The result is that
the implicit thread will print three instants and then return from
run-n-instants.

There is a minor problem with this code though, because the
ulm:when and ulm:watch blocks terminate immediately upon
termination of their body, whether or not the preemption or sus-
pension signal has been emitted. This means that oncethunk re-
turns (say, a normal return, not interrupted by thekill-signal),
the killer thread is still running for a number of instants, albeit
harmlessly, since emitting thekill-signal after thunk has re-
turned means that there is nothing to preempt anymore. This is
still a waste of execution and a more proper way to implement
run-n-instants would be such:

1: (define (run-n-instants n thunk)
2: (let ((kill-signal (ulm:signal ))
3: (done (ulm:signal )))
4: (ulm:thread
5: (lambda ()
6: (ulm:watch done
7: (lambda ()
8: (let loop ((i n))
9: (if (> i 0)

10: (begin
11: (ulm:pause )
12: (loop (- i 1)))
13: (ulm:emit kill-signal)))))))
14: (ulm:watch kill-signal thunk)
15: (ulm:emit done)))

In ULM, preemption is said to beweak because it does not
happen at the moment the preemption signal is emitted during the
instant, but only at the end of the instant. This is different from
the common notion of preemption using exceptions where no code
is executed between the throwing and the raising (or even from
strong preemption in ESTEREL [8] where the preempted code is
not even executed in the first place). In ULM a preempted thread
can continue executing at most until the end of the instant. This
delaying of preemption (and migration, as we will see later) to the
end of instant, as opposed to during the instant, happens because
control flow within a given instant should be independent of the
scheduling order.

With only the primitives ulm:thread, ulm:signal,

ulm:emit, ulm:when and ulm:watch 2 we can create threads,
allow them to cooperate, let them enter critical sections, make them
communicate and decide how they should be sequenced.

3 ULM Mobility

ULM definesstrong mobility primitives that allowagentsto mi-
grate betweensites. Strong mobility allows threads to be mi-
grated with their state, without special treatment from the program-
mer. This type of migration is transparent and the migrated thread
doesn’t need to notice it migrated. Note the strong and weak vari-
ants of preemption are different from the strong or weak notions in
mobility. In our implementation, a site is a Virtual Machine (VM),
be it on the same computer or on separate networks.

3.1 Mobility

In ULM, an agent is a kind of thread that can move across sites
and has anagent heap. There are two kinds of heaps in ULM: the
classical heap (calledsite heap) is local to a site and does not move.
Agent heaps on the other hand are attached to agents, and migrate
with them. A variable allocated in either heap is accessed by means
of a reference, which can belocal if the reference is on the same
site as the heap it points to, orremoteif they are on different sites.
A local reference access is non-blocking while a remote reference
access is always blocking. Whenever a thread attempts to access a
reference whose heap is remote, it will be blocked until that heap
comes in (with its agent) or until the blocked thread is migrated to
the heap’s site, unless the access is preempted, of course.

Just like a thread is created with(ulm:thread thunk), we cre-
ate an agent with(ulm:agent proc). Migration of an agent
is strong, and so an agent migrates with its code, registers, stack
and heap. Migration is done by calling either(ulm:migrate-to

2Implementation ofulm:await and ulm:pause using these
primitives is left as an exercise for the reader.



90

host) or (ulm:migrate-to host agent). The first form mi-
grates the current agent to the givenhost, while the second form
migrates the givenagent (subjectiveandobjectivemigration resp.).
While ulm:thread takes a thunk for the thread body,ulm:agent
takes a procedure of one argument for the agent’s body. This pro-
cedure will be called with the agent’s name, which is also returned
by theulm:agent call to the creating thread. This name is used
for objective migration.

As we mentioned earlier, migration only happens between instants
(like preemption), and(ulm:migrate-to host) does not block
until the end of instant. This means that anything executed between
the call toulm:migrate-to and the end of instant will be exe-
cutedprior to moving. This is why we often useulm:pause after
ulm:migrate-to . The reason why subjective migration is non-
blocking is to keep it symmetrical with objective migration, which
has no reason to be blocking.

Here is a first example of migration:

1: (ulm:agent
2: (lambda (name)
3: (print "here")
4: (ulm:migrate-to "other-host")
5: (ulm:pause )
6: ;; we are now on ’other-host’
7: (print "there")))

This creates an agent that will print something on its cre-
ation site, then migrate (line4) and wait for arrival (line5). Once it
arrives on the new site, it prints something there and terminates.

3.2 Mobility Groups

There is a certain hierarchy between agents and threads: threads
have a parent, which can be either the local site, or an agent. Agents
on the other hand do not have a parent. Any thread created directly
by the implicit thread has the local site as parent, while any thread
created directly or indirectly by an agent has that agent as parent.
This allows us to form groups of threads that will function and mi-
grate together. Let us illustrate migration grouping:

1: (ulm:thread
2: (lambda ()
3: (print "Our parent is the local site")
4: ; create a new agent and store its name
5: (let ((name
6: (ulm:agent
7: (lambda (name)
8: ; create a thread that
9: ; stays with us
10: (ulm:thread
11: (lambda ()
12: (let loop ()
13: (print "Second thread")
14: (ulm:pause )
15: (loop))))
16: ; do silly things
17: (let loop ()
18: (print "Agent alive")
19: (ulm:pause )
20: (loop))))))
21: ; move the agent and its side-kick
22: (ulm:migrate-to "host" name))))

Here we have a thread created by the implicit thread (line1), which
has the local site as parent. This thread creates an agent (line6)

and then migrates it via objective migration (line22). This agent
will only have its first instant executed on the local site, prior
to migration. During that first instant, it creates a second thread
(line 10), and then prints in a loop (lines17-20). That second
thread will have the agent as parent, and so will migrate with him
at the end of the instant. Just like its parent, this thread will only
execute locally during its first instant, prior to migration, and so the
execution on the local site will be such:

Our parent is the local site
Agent alive
Second thread

After that, both the agent and its child thread will resume execu-
tion and printing on the remote sitehost. Migration groups are
used to keep consistency between an agent and the threads it needs
to function. It has the additional benefit that these groups keep a
local non-blocking access to the agent’s references throughout mi-
grations.

3.3 Confinement of Non-Determinism

While the execution of threads and agents within a given instant
is entirely deterministic, the physical migration of agents between
sites is intrinsically non-deterministic. This is why agents migrate
between instants: it isolates non-determinism between instants, at a
well defined place. However, sites need not share a global instant.
Rather, each site has its local instants, and when an agent changes
site, he leaves a local instant to enter another on the new site. Even
when sites exchange agents, the number of local instants on each
site that lapse during the physical transportation of the agents is
arbitrary and non-deterministic. In particular, if an agent A leaves
the site S1 for the site S2 which is locally at instant Ii (at the time
when the agent leaves), the agent can arrive at the instant Ii +1+n
on S2, with n ≥ 0. The inter-instant migration of the agent can
be seen as a first local inter-instant phase, and a later second inter-
instant phase at the destination site.

3.4 Shared Variables

The behaviour of the first example of migration is quite simple, but
migration introduces questions regarding variables that are shared
between migrating agents and the threads that stay behind. What
happens when two threads sharing a variable are separated is a clas-
sical question among mobile languages [2,14]. Let us illustrate one
of those problems:

1: (let ((shared-var 2))
2: (ulm:agent
3: (lambda ()
4: (ulm:migrate-to "other-host")
5: (ulm:pause )
6: ;; we are now on ’other-host’
7: (set! shared-var 5)
8: (print shared-var)))
9: (ulm:pause )
10: (set! shared-var 9))

In this example we create an agent that migrates toother-host to
set the variableshared-var and print it (lines7 and8).

Here we have the local variableshared-var, which is free in
agent’s body: it is allocated in the calling thread’s stack. When
the agent migrates and keeps using this variable we have a prob-
lem: this local variable is being used by two different threads on



91

different hosts.

Some other languages transform any free variable in an agent’s
body into a remoteproxy. Proxies are a way to reference vari-
ables across the network in a transparent manner, reading or setting
it through the proxy causing network communication between the
proxy and the remote variable. The remote references in ULM do
not have transparent proxy semantics though. Besides, ULM refer-
ences are explicitly declared, accessed and read (see Section 3.6),
so they are in no way transparent. Furthermore, turning these free
variables into references would block the program as soon as line7,
which is not what one would expect.

Using proxies here would solve this problem, but to what cost?
ULM references were created to offer a reliable deterministic se-
mantics of execution locally. This is what GALS means: commu-
nications across sites are unreliable and accessing a local variable
should in no way introduce non-deterministic behaviour in a thread.

3.5 Migration by Copy

In order to solve thefree variableproblem, we have decided to
migrate them by copy. Here is an example to illustrate the copying
of free local variables:

1: (define (remote-run remote-host thunk)
2: (let ((set-signal (ulm:signal ))
3: (val ’undef))
4: (ulm:agent
5: (lambda (name)
6: (ulm:migrate-to remote-host)
7: (ulm:pause )
8: ; we’re now on remote-host
9: (set! val2 (thunk2))

10: (ulm:migrate-to "home")
11: (ulm:pause )
12: ; we’re now back home
13: (ulm:emit set-signal)))
14: ; wait for the agent to return
15: (ulm:await set-signal)
16: ; return the value
17: val))

This is a first attempt at implementing an RPC (Remote Pro-
cedure Call), which unfortunately does not work as intended,
as will be explained below. The procedureremote-run takes a
remote-host and athunk as parameters and sends an agent on
remote-host to execute thatthunk and return its value. The
caller thread waits for the agent to come back by waiting on a
shared signal (line15), which will be emitted by the agent when
it returns (line13). Note that executing an agent’s body does not
yield any value, since it can terminate anywhere and would not
know whom to return that value to.

This (wrong) example allocates aval variable outside the agent’s
body (line3), which is shared by the agent and the caller thread,
but only up to the pointwhen the agent migrates (line7). During
migration, all free variables used by the agent (underlined in the ex-
ample) are duplicated for the agent to go along with (marked with
2), together with the values associated with those variables at the in-
stant of migration. This is migration by copy. Once the agent comes
back home, it still has its own copy of the variableval (i.e. val2),
which is not the same as theval it left behind. Therefore, setting
it has no effect for the waiting thread, which will always return an
undefined value. We will explain in Section 3.9 whyset-signal
does not suffer from duplication.

With this example, we notice that migration by copy does solve
the free variable problem, but is not enough to allow interaction
between two threads that have been separated by migration.

3.6 References

This is where ULM references show their value. Let us attempt to
solve the last problem with references:

1: (define (remote-run remote-host thunk)
2: (let ((ref (ulm:ref ))
3: (set-signal (ulm:signal )))
4: (ulm:agent
5: (lambda ()
6: (ulm:migrate-to remote-host)
7: (ulm:pause )
8: ; we’re now on remote-host
9: (let ((val (thunk)))

10: (ulm:migrate-to "home")
11: (ulm:pause )
12: ; we’re now back home
13: (ulm:ref-set! ref val)
14: (ulm:emit set-signal))))
15: ; wait for the agent to return
16: (ulm:await set-signal)
17: ; return the value
18: (ulm:unref ref)))
19:
20: ; go fetch the uptime of "other-site"
21: (remote-run "other-site"
22: (lambda () (getuptime)))

This procedure creates a reference stored on the local site’s
heap ((ulm:ref ) creates a new reference, line2). It then sends
an agent on theremote-host (line 6) to execute thethunk there
(line 9) and return (line10) with its return value inval. Once
back, it sets the reference to that value ((ulm:set-ref! ref
var) affectsval to the ULM referenceref, line 13), wakes up the
caller thread (lines14 and16), which uses that reference to return
its value ((ulm:unref ref) returns the value of the reference
ref, line 18). This example does not illustrate the use of remote
references with its blocking semantics, but it does show how
references are used by threads separated by migration to share a
variable.

In thisremote-run example, we create a reference to a variable al-
located in the local site’s heap (line2), and the agent migrates with
it. During migration, it mutates from a local reference to a remote
reference: it becomes a unique distant reference on the other site.
But setting it there would block the agent (remember: remote ac-
cess to references is blocking). Instead, we create a local variable to
store the return value ofthunk (line 9), and migrate back. Once the
agent arrives on the site where the reference is stored, our remote
reference becomes a local reference again. Exactly the same refer-
ence that was created before leaving, and the same that the caller
thread (that stayed here all along) is using. Setting this reference to
val (line 13) allows the agent to communicate a value to the caller
thread that was waiting for it.

3.7 Global Variables and Modules

Although it may not seem directly relevant to our discussion on
mobility, the module system of ULM is presented here because it
introduces the definition and scope of global variables. In our im-
plementation of ULM, a global variable is associated to themodule
that declares it. Each module has a list of global variables that can



92

beexportedto other modules thatimport them, and a toplevel exe-
cution. Here is an example of ULM module:

1: (module foo
2: (import std-scheme ulm)
3: (export
4: bar
5: (gee x)
6: ))
7:
8: (define bar 2)
9:
10: (define (gee x)
11: x)
12:
13: (define (mine)
14: (print "non-exported global"))

This declares a module namedfoo, which uses global vari-
ables exported by theulmandstd-schememodules, and exports the
two global variablesbar andgee. Global variables representing
closures are exported in a syntax that explicits their prototype
(here(gee x) to warn importers ofgee that it is a procedure and
takes one argument). Heremine is a non-exported global variable
containing a closure. It is local to this module and cannot be used
by other modules. The exported variablesbar andgee on the other
hand can be imported and used by any other module, if they import
the modulefoo.

There are two main standard modules in ULM:std-schemewhich
exports some standard Scheme procedures (such asfor-each or
assq)3, andulm which declares and exports every ULM primitive
and derived constructs, prefixed with theulm: namespace for clar-
ity.

3.8 Ubiquitous Variables

We now know how to share variables across the network, and mi-
grate with free variables that will be duplicated. What about stan-
dard libraries? In the last example, we only talked about freelocal
variables, but there are more variables that become free during mi-
gration: global variables suffer the same problem. Although you
could expect global variables from the current module to be du-
plicated during migration (just like local variables), variables from
other modules (such as ourulm or std-schememodules) deserve
another treatment: otherwise, migrating any agent would result in
migrating copies of whole libraries, which is a waste of bandwidth.

In addition to the local and global variables which are duplicated
during migration, there is a type of variable calledubiquitous.
Ubiquitous variables constitute a category of global variables that
are not duplicated during migration. Instead, they are bound dy-
namically upon arrival on the new site. This imposes a few restric-
tions though, the first one being that it must be possible to find these
variables upon arrival (local variables fall out of this category).

In our implementation of ULM, global variables are bound to
modules, and can be exported outside of these modules. Only
modules can be declared ubiquitous (using the module declaration
ubiquitous-module instead ofmodule as seen in the last sec-
tion), which makes all the global variables it exports also ubiqui-
tous. Those modules are called this way because the programmer
assumes they can be found everywhere at the same time, that is on
every site. Using those ubiquitous variables while migrating means

3 Our ULM Scheme is not R5RS compliant.

that upon arrival on the new site, they will be dynamically bound to
their local counterparts.

Ubiquitous variables allows ULM programs to interact with sites
and agents after migration. It is used among other things to move
without dragging along whole libraries (such as the standard ones),
to be able to call local procedures (likegethostname), and to in-
teract with the site or other agents via those local procedures.

Since we declared ourstd-schemeand ulm modules ubiquitous,
here is what theremote-run example looks like with ubiquitous
variables underwaved and duplicated variables underlined:

1: (define (remote-run remote-host thunk)
2: (let ((ref (

::::::
ulm:ref))

3: (set-signal (
::::::::::
ulm:signal)))

4: (
::::::::
ulm:agent

5: (lambda ()
6: (

:::::::::::::
ulm:migrate-to remote-host)

7: (
:::::::::
ulm:pause)

8: ; we’re now on remote-host
9: (let ((val (thunk2)))
10: (

:::::::::::::
ulm:migrate-to "home")

11: (
:::::::::
ulm:pause)

12: ; we’re now back home
13: (

:::::::::::
ulm:ref-set! ref2 val)

14: (
::::::::
ulm:emit set-signal2))))

15: ; wait for the agent to return
16: (

::::::::
ulm:await set-signal)

17: ; return the value
18: (

::::::::
ulm:unref ref)))

19:
20: ; go fetch the uptime of "other-site"
21: (remote-run "other-site"
22: (lambda () (

::::::::
getuptime)))

23: )

Here it is clear that all theulm:... procedures are ubiqui-
tous, as isgetuptime, since we want to get the uptime of the
site to which we migrate. All local variables are duplicated by
the migration, as is the global variableremote-run, which is not
ubiquitous4.

3.9 Special Values

You will notice that references and signals are underdashed instead
of underlined in the previous example. This is because they are in
effect duplicated during migration, but their values are special. We
already explained that references can change state (local/remote)
during migration but remain unique on each site: this is whyref is
the same asref2 upon return of the agent (lines13 and18 in the
last example).

Signal values are also special: they are associated a universal value,
which will always be equal after migration, in the same way strings
that are noteq? can beequal?. This explains why emitting
set-signal2 (line 14) awakes the thread waiting onset-signal
(line 16).

3.10 How It All Fits Together

We have described informally the behaviour of free local variables,
global variables, ubiquitous global variables, and two special kinds

4Actually, remote-run is never used by the agent after migra-
tion, so it is not necessary to duplicate it.



93

of values with respect to migration. It should be noted that aside
from the signals and references values, only variables are concerned
by migration. In particular, values such as pairs or vectors, which
can contain other values, do not act like variables and the distinction
between ubiquity or copy is never relevant to values. To illustrate
the distinction, two agents cannot share a value through a pair’s
content unless that pair has been obtained by a common variable
since their last migration, and if both agents are on the same site.

Our experience in programming with ULM is that the distinction
between these types of variables or values is quite intuitive. Any-
thing you want to keep sharing after migration has to be explicitly
declared (through references). The other variables will be taken
care of: that is, whether they are dynamic or duplicated, your pro-
gram will keep running after migration. Suspension on a reference
is explicit (via ulm:ref-set! for example), so the programmer
knows where potential suspension happens.

Whether the variables are dynamic or duplicated is left to the mod-
ule designer that provides the variable (in the case of global vari-
ables), so, for instance the programmer does not need to know (in
most cases) whether his implementation ofmap comes from one site
or another. In any case, the module designer knows what to declare
ubiquitous.

The only thing that might surprise programmers at first is the free
variable duplication, if they try to use them as a communication
means between migrated agents and sites for example. But this is a
habit worth losing in the case of ULM because inter-agent commu-
nication can be done via references, signals or dynamic variables.
The philosophy behind these types of variables is that local intra-
agent execution is the default. Any inter-agent communication is
explicitly marked so.

4 Extended Example

We now present an example which illustrates the benefits of ubiqui-
tous variables, along with a mobile reactive chase. The following is
a prey/predator example in which rabbits try to escape a fox. Rab-
bits eat grass in a field (we will use a field per site) until they are
fed up or hear a fox arriving or killing another rabbit, in which case
they migrate to a random site and leave a trail. The fox makes noise
when he arrives in a site, and then hides until rabbits come in or he
gives up. When a rabbit comes in the fox kills the first one and goes
away. In this example, ubiquitous variables (except those from the
ulmandstd-schememodules) are underwaved:

1: (ubiquitous-module salad-field
2: (import std-scheme ulm)
3: (export
4:

:::
kill ; local signal

5:
:::::::::::
fox-arriving ; local signal

6:
::::::::
eat-grass ; local signal

7: (
::::::
go-away)

8: (
:::::::::::
follow-trail)

9: ))
10:
11: (define *trails* ’())
12:
13: (define

::::
kill (ulm:signal ))

14: (define
::::::::::::
fox-arriving (ulm:signal ))

15: (define
:::::::::
eat-grass (ulm:signal ))

16: (define (
:::::::
go-away)

17: (let ((dest (random-other-site)))
18: (set! *trails* (cons dest *trails*))
19: (ulm:migrate-to dest)
20: (ulm:pause )))
21:
22: (define (

:::::::::::
follow-trail)

23: (let ((dest (if (pair? *trails*)
24: (car *trails*)
25: (random-other-site))))
26: (ulm:migrate-to dest)
27: (ulm:pause )))

We define an ubiquitous ULM module with three signals and
two procedures exported. These exported variables represent
signals and procedures local to a site: in this case a signal to
indicate the fox’s arrival (fox-arriving), one emitted by rabbits
while eating (eat-grass), and another to represent the fox killing
a rabbit (kill).

We now define a non-ubiquitous module where the behaviour of
rabbits and foxes are each defined in a procedure:

1: (module fox-rabbit
2: (import std-scheme ulm salad-field))
3:
4: (define (rabbit name)
5: (let ((killme (ulm:signal )))
6: (let watchout-loop ()
7: (ulm:watch killme
8: (lambda ()
9: (let ((bored #f))

10: (print name " Rabbit Arriving")
11: (ulm:watch-or (list

:::::::::::
fox-arriving

::::
kill)

12: (lambda ()
13: (let eat-loop ()
14: (ulm:emit

::::::::
eat-grass killme)

15: (print name " Rabbit Eating")
16: (ulm:pause )
17: (if (= 1 (random 5))
18: (set! bored #t)
19: (eat-loop)))))
20: (if bored
21: (print name " Rabbit Bored")
22: (print name " Rabbit Fleeing"))
23: (

:::::::
go-away)

24: (watchout-loop)))))
25: ; we got killed
26: (print name " Rabbit Dead")))

The behaviour of the rabbit agent is defined in therabbit
procedure. The rabbit starts by creating a signal (line5) by which it
will be identified in case it gets killed. It then enters a preemption
block on that signal (line7): when that signal is emitted, the rabbit
dies. In that block it is going to eat (line13) for a random amount
of instants while watching out for a fox arriving or the fox killing
another rabbit (this is a variant ofulm:watch which preempts on
any presence in a set of signals, line11). The eating consists in
emitting theeat-signal with the signal representing the rabbit’s
life as value5 (line 14). When the rabbit is bored (line18) or is
preempted by the fox’s arrival or killing another rabbit (line11), it
goes away and loops (lines23and24).

Notice how kill, fox-arriving, eat-grass and go-away
are ubiquitous variables: they are dynamic per-site.

5This introduces valued signals: you can assign several values
to a signal during the instant, the first one of which sets it as emitted.



94

The fox’s behaviour is defined in the procedure that follows:

1: (define (fox name)
2: (let loop ()
3: ; arrive somewhat noisily
4: (print name " Fox Arriving")
5: (ulm:emit

:::::::::::
fox-arriving)

6: (ulm:pause )
7: ; wait for a rabbit silently
8: (let wait ((i 20))
9: (if (> i 0)
10: (let ((eaters (ulm:present

::::::::
eat-grass)))

11: (if eaters
12: (begin
13: (print name " Fox Killing "
14: (car eaters))
15: (ulm:emit

::::
kill)

16: (ulm:emit (car eaters)))
17: (begin
18: (print name " Fox Hiding")
19: (wait (- i 1)))))))
20: (print name " Fox Going")
21: ; follow the first trail
22: (

:::::::::::
follow-trail)

23: (loop)))

The procedure(ulm:present s) (line 10) is used to query
the presence of the signals at the current instant. Ifs is emitted
during this instant,ulm:present will unblock at the current
instant and return any value associated with it when it was emitted.
But there is no way to know whether a signal will notbeen emitted
within an instant, because we only know its absence when we have
decided to stop running threads in an instant. This is called the end
of instant, so in ULM, absence can only be determined at the end
of instant, and since no thread can run between instants, reaction
to absence is always done in the next instant. The behaviour of
ulm:present when s has not been emitted during the current
instant is to return#f at the next instant.

The fox emits thefox-arriving signal in the instant it arrives
(line 5), then it hides and waits for the first broadcast ofeat-grass
(line 10), which is emitted by any eating rabbit. If there is nothing,
that call is blocking (implicit cooperation) and we can safely loop
because we’re already at the next instant when it returns (line19).
If there is a rabbit,ulm:present returns the list ofkillme sig-
nals emitted by each rabbit while eating. Each signal represents
the life of a rabbit (the outerwatch block of his loop, line7 of the
rabbit procedure). The fox can then emit thekill signal to warn
all rabbits (line15), and the signal that will kill the first rabbit that
showed up (line16). After that, the fox follows the first trail it finds
and goes on another site (line22).

Note that the killed rabbit is preempted twice in the same instant:
once by the emission of itskillme signal, and the second time by
the kill signal. Whenever several watch blocks should be pre-
empted, it is the outermost block that is preempted, thus killing the
rabbit without making him flee. It is also worth noting that since
the preemption is weak, the rabbit still has time to chew his last bit
of grass before dying6.

The use of ubiquitous signals and methods to represent what hap-
pens in each site enables us to start rabbits and foxes on any differ-
ent site, and still have them interact on each site according to the
local signals and procedures.

6Which clearly shows the total lack of resemblance between
these rabbits and Evil ones with Big Sharp Pointy Teeth.

5 Implementation

We chose Scheme as the host language for the ULM primitives in
order to concentrate on the reactive and mobility issues and not
on complex host language syntax or semantics. Due to the strong
migration semantics, we opted for a bytecode compiler/VM cou-
ple, to avoid having an interpreter stack while executing ULM pro-
grams, since stacks are typically not first-class objects (and indeed
not in the target executables our interpreter is compiled in: Java,
C, .NET). We use an academic bytecode interpreter from Quein-
nec [3] to compile scheme primitives to bytecodes and to execute
those bytecodes. We also use the syntactic macros from Bigloo [13]
along with its implementation of most of the standard Scheme li-
brary used from ULM. The compiler and VM are also written in
Bigloo Scheme, for portability and native execution.

5.1 Reactivity

Reactive ULM primitives and scheduling are managed in theulm
module, implemented in the host language itself, with only three
VM primitives added. In the VM, each thread is represented by
a closure object, a stack and any register that needs saving by the
VM when changing context (such as the program counter, stack
pointer, etc...). In theulmmodule, scheduling is done with an extra
thread that is executed only at the end of instants to initiate the
next instant. The scheduling of threads during the instant is done
by the threads themselves, whenever they emit or wait for signals.
In theory the scheduler thread is optional since theend of instant
could be executed in any other thread, but using an extra thread
made things much easier to write and understand.

5.1.1 Contexts

Suspension and preemption are represented by a list ofWW-cells
(When/Watch cells) that are augmented with either a When-cell
or a Watch-cell when entering a suspension or preemption block
(resp.). When-cells specify the signal of theulm:when block, and
a boolean that indicates whether it is satisfied for this instant (it
is satisfied if the signal has been emitted). Watch-cells associate
the preemption signal with a procedure that can escape from the
ulm:watch block. Preemption is implemented usingbind-exit7:
each time aulm:watch block is entered, we enter abind-exit
block and associate itsexit procedure with the preemption signal.

5.1.2 End of Instant

At the end of the instant, the scheduler thread walks the list of
threads and reverts all When-cells to’unsatisfied. Then for
the outermost Watch-cell that is satisfied, the scheduler notifies
the thread that it should be preempted (we will see where this is
done later). Any thread with no’unsatisfied When-cells (that
includes preempted threads) is scheduled to run at the next instant.

5.1.3 Scheduling

We already revealed that intra-instant scheduling is done by the
threads themselves, during various ULM primitive calls. Emitting a
signal causes the list of threads waiting for it to be examined. Each
unsatisfied When-cell is checked and threads that only have satis-
fied When-cells are rescheduled for later in the instant. In other
words, threads that have several When-cells are only allowed to run

7A form of call/cc whoseescapeprocedure is only valid in its
dynamic extent.



95

when allhave been satisfied. This enables us to have threads wait-
ing for n signals only be present in any one signal queue at a time.
A thread will thus hop from one waiting queue to the other (as each
queue is satisfied) in the worst case, but be considered for schedul-
ing only once in the best case (if it is in the queue of the its last
unsatisfied signal).

5.1.4 Context Switching

Context switching is done when waiting for a signal that hasn’t been
emitted yet (by entering aulm:when block8). When that happens,
the thread blocks and finds the next thread to schedule and tells the
VM to switch its context to it. Here is the procedure that switches
context in theulmmodule:

1: (define (cooperate)
2: ; tell the VM to switch context
3: ; to the next thread
4: (switch-to-thread (get-next-thread))
5: ; treat preemption
6: (if (thread-preempted? *current-thread*)
7: ; get the Watch-cell of the signal
8: ; that preempted us
9: (let* ((watch-cell (thread-preempted-cell
10: *current-thread*))
11: (exit (cddr watch-cell)))
12: (exit))))

We can see here that all blocked threads are in thecooperate
procedure, blocked in the call to theswitch-to-thread
VM primitive. When there is no thread left to schedule,
get-next-thread returns the scheduler thread, which declares
the end of instant.

5.1.5 Preemption

Preemption is decided at the end of the instant, and executed
in the next instant. Since all threads unblocked return from the
switch-to-thread call, we check for preemption there, before
returning fromcooperate. When preemption is needed, we find
the exit escaper associated with the preempting signal, and exe-
cute it, thus unwinding at the end of thewatch call. This is ef-
fectively done in the new instant and ensures that any preemption
handlers (such asunwind-protect9) are called in the new instant
and not during the end of instant phase.

5.2 Mobility

Mobility is implemented mostly in the VM, because serialisation of
the thread state (stack, memory and bytecodes) requires extensive
access to data that should be kept away from the interpreted lan-
guage. Migrating a thread from one site to another consists in find-
ing all accessed (and future accesses to) variables and bytecodes,
modification of bytecodes, serialisation, transport, deserialisation
and integration.

5.2.1 Finding Accessible Variables

Finding all accessible variables is done by looking through the cur-
rent environment, the stack, and the bytecode of all accessible clo-
sures. Each accessible object is assigned a unique serial number

8ulm:pause andulm:await are derived fromulm:when .
9A variant ofdynamic-wind with nobeforeblock.

used later to resolve circular references. Ubiquitous variables are
not traversed, since they will be dynamically bound after migration.

5.2.2 Modification of Bytecodes

The bytecode needs to be modified before migration for two rea-
sons: first, the migrating agent will become a special kind of mod-
ule during migration, and second because this is where variable
duplication takes place. Making a module out of each migrating
agent allows us to simplify the encapsulating process because an
agent migrates with bytecode, a list of constants, a list of global
variables and a name, which fits perfectly the role of modules and
makes inserting an agent in a site fairly easy. These are special
modules however, in the sense that they do not export any variable
and cannot be imported. The bytecode modification is needed be-
cause during the search for accessible variables, we come across
global variables that are not ubiquitous and need special treatment.

There are three types of bytecodes to access variables:
LOCAL-REF/SET, GLOBAL-REF and IMPORTED-REF.
LOCAL-REF/SET represent local variables, that is, lambda
parameters, and they can never be ubiquitous.GLOBAL-REF and
IMPORTED-REF are both global variables but the first one is a
global variable from the current module and is indexed, while the
second one is an imported global variable, referenced by module
and global names.

GLOBAL-REF bytecodes need to be changed intoIMPORTED-REF if
the current module is ubiquitous, orphagocytizedotherwise. We
call phagocytizing a global variable the action of duplicating it, and
adding it to the module we create for the agent migration. In effect
the agent keeps using that global variable, but it is relocated in its
own module, changes index and migrates with a copy of its current
value.

In a similar way, IMPORTED-REF bytecodes that refer to non-
ubiquitous variables need to be phagocytized and changed into a
GLOBAL-REF. The closures that are not referenced through ubiqui-
tous variables also need to be phagocytized, since we need to add
their bytecode to the agent’s module, bytecode which has to be re-
located and modified.

5.2.3 Serialisation and Transport

Serialisation is done by iterating all the values we affected serial
numbers to, and using either introspection or specialised treatment
to create analist structure to represent them. References are seri-
alised specially, by mutating their state to remote where applicable:
all local references not allocated in the agent’s heap become remote
before migrating. Local references that stay behind but point to
the migrating agent’s heap also become remote. These serialised
values, along with the agent’s module and a pointer to the agent’s
thread structure (which happens to be the root of serialisation) are
then sent along the network asynchronously.

5.2.4 Deserialisation

On the other site, an asynchronous thread waits for incoming agents
and stores them during the ULM instants until synchronous incor-
poration at the end of instant phase. Deserialisation is done in two
phases: allocation of all the objects that have a serial number, and
affectation of all these object’s members that were referred to by
serial number. Reference mutation also happens during this phase:
remote references held by the agent that point to a local heap be-



96

come local, as do remote references present on the site that point to
the new agent’s heap.

5.2.5 Integration

Integration is the simplest phase, since after deserialisation we are
left with a pointer to the agent thread, and its module. We simply
load that module, add the agent thread to the list of threads and
notify theulm library that there is a new agent to schedule.

5.3 Migration Examples

Now that we have seen all the details of global variables and migra-
tion, here is an example of how migration actually works, as far as
the programmer is concerned:

1: (module home-mod
2: (exports
3: home-var
4: (home-fun arg)))
5:
6: (define home-var 3)
7:
8: (define (home-fun arg)
9: (set! home-var arg))

10: (ubiquitous-module ubiq-mod
11: (import home-mod ulm)
12: (exports
13: ubiq-var
14: (ubiq-fun a b)))
15:
16: (define ubiq-var "dynamic")
17:
18: (define (ubiq-fun a b)
19: (* a b))
20:
21: (ulm:agent
22: (lambda ()
23: (ulm:migrate-to "host")
24: (ulm:pause )
25: (print ubiq-var)
26: (ubiq-fun home-var 2)))

27: (module main-mod
28: (import home-mod ubiq-mod ulm))
29:
30: (define my-var "hello")
31:
32: (ulm:agent
33: (lambda ()
34: (home-fun 5)
35: (ulm:migrate-to "host")
36: (ulm:pause )
37: (print my-var)
38: (ubiq-fun 2 3)))

We define three modules:home-mod exports non-ubiquitous
global variables,ubiq-mod defines and exports ubiquitous global
variables and sends an agent tohost, while main-mod defines
non-ubiquitous variables and also sends an agent tohost. After
the transformations of bytecode during migration, here is how the
two agents would look like upon arrival onhost if their bytecode
was disassembled into this fictitious code:

1: (agent-module agent1
2: (import ubiq-mod ulm))
3:
4: (define home-var 5)
5:
6: (define agent1-body
7: (lambda ()
8: (ulm:migrate-to "host")
9: (ulm:pause )
10: (print ubiq-var)
11: (ubiq-fun home-var 2)))

12: (agent-module agent2
13: (import ubiq-mod ulm))
14:
15: (define home-var 5)
16:
17: (define (home-fun arg)
18: (set! home-var arg))
19:
20: (define my-var "hello")
21:
22: (define agent2-body
23: (lambda ()
24: (home-fun 5)
25: (ulm:migrate-to "host")
26: (ulm:pause )
27: (print my-var)
28: (ubiq-fun 2 3)))

This example illustrates several things. First, that the agents be-
come their own module (illustrated by the fictitiousagent-module
directive). To their modules are added copies of any non-ubiquitous
global variable they were using (from their module or any other):
what we call phagocytizing. All ubiquitous global variables (like
ulm:pause or ubiq-fun) mutate (if not already) into a dynamic
variable bound upon arrival to the new site’s equivalent variables.

Note that while agent modules are a practical implementation tech-
nique, they are not directly available to the programmer, who will
likely never need to know about them.

6 Food For Thought

The ULM interpreter we have implemented is a prototype: it im-
plements the semantics of Scheme and the ULM primitives, and
adds the notion of ubiquitous variables for the migration semantics.
However, there are a number of things that still need to be worked
on: better compilation analysis and optimisation and a distributed
garbage collector. The possibility to call native code from ULM and
have that native code call back ULM code has been implemented,
and we are studying its implications regarding mobility.

Some other enhancements would benefit directly to the ULM prim-
itives: during compilation, bytecodes for global variable access
could be adapted for ubiquitous modules (this is currently done
during migration), as long as it does not impede on non-mobile ex-
ecution (since we expect migration to be less frequent than global
variable access). Better code analysis and compilation could lead
to reduced memory traversal during migration (unused variables or
dead code for example).

Implementation of derived ULM procedures (such asulm:pause
or ulm:present) would benefit from direct support in the reactive
engine, instead of being implemented via ULM primitives.

An object system in ULM could allow us to implement classical
distributed proxies that could be used in migration to implement dif-



97

ferent argument passing styles for RPC (copy, migrate, visit, lazy,
etc...). Representing signals as objects could also open new ways to
interact with them. A preliminary work on implementing a mixin
object system as defined by G. Boudol [9] has been done, but is not
presented in this paper.

Mechanisms in case of migration transport failure or node unavail-
ability have not been studied yet, as these types of failures are hard
to represent semantically. We could imagine that migration would
return a signal that would be emitted in case of successful arrival,
with a notion of timeouts and retries (any agent that can migrate can
also be saved on disk10 to be used for retries or reentry).

The notion of ubiquitous modules implies that an agent expects
them to be on every site it visits. Mechanisms in case of missing
ubiquitous module upon arrival have not been studied. Automatic
retrieval, migration failure or blocking the agent are possible an-
swers, although the last one fits best the philosophy behind ULM.
Reifying modules as first-class objects could also provide clues on
how to treat this, as agents could perhaps fetch and load modules
explicitly during execution.

Although the ULM primitives integrate well withbind-exit and
unwind-protect (both presented in Section 5.1.1), this is be-
causebind-exit can be seen as an intra-instant preemption akin
to ulm:watch . call/cc on the other hand, interferes with ULM
primitives, and introduces questions regarding the passing of con-
tinuations between threads which we do not wish to allow.

Even though an agent can acquire new procedure values during mi-
gration, which means the agent will collect the bytecode, together
with the captured and global variables of that procedure, each site’s
GC ensures that they will be collected when not used anymore. In
any case, the traversal done prior to migration will not collect un-
used procedures, and dead code analysis will help in leaving be-
hind any variable access that will never be reached in the bytecode
that needs to be taken. There is no reason why agents would grow
upon each migration unless they need to by collecting useful pro-
cedures. The captured bytecode could however often be shared be-
tween agents and even with local sites, but we have not studied such
a mechanism for our prototype.

7 Related Work

Few other languages offer both Mobility and Reactivity together
with a strong deterministic semantics. Junior [6] offers both a de-
terministic semantics and reactive programming but only reactive
mobility: the state of the reactive engine can be migrated, but not
the state of the host language (Java in this case). In Junior, this does
not have a big impact, since aside from the reactive instructions,
non-reactive Java code is supposed to be atomic and have finished
execution between instants. ULM on the other hand allows reac-
tive instructions (including migration) to be called by non-reactive
instructions.

ESTEREL [8] is the reactive language from which most reactive
primitives in ULM are inspired. Its model of execution is however
very different from ULM because it is based on calculation rather
than discovery. In our model we discover emitted signals as we ex-
ecute the code that emits them, while in ESTEREL the presence or
absence of signals is calculated for each instant, and holds through-
out the entire instant. Because of that, ESTEREL is less modular
and dynamic than ULM. It also does not provide mobility.

10This is the notion ofcheckpointsin Eden [1] and Emerald [5].

Bigloo FairThreads [6] add a reactive library to Bigloo Scheme (on
which parts of our reactive module are based), but do not support
migration. On the other hand, FairThreads support multiple sched-
ulers and asynchronous threads (that interact in a deterministic way
with synchronous threads by becoming synchronous during inter-
action).

Concurrent ML [11] offers a preemptive scheduling of multiple
threads in a functional language. Communication and synchroni-
sation between threads in CML is done via channels that can be
shared by multiple threads, whereas ULM synchronisation is done
via broadcast events. It should be possible to program in a simi-
lar way to ULM’s signals, but critical sections have to be explicitly
marked, as with traditional preemptive schedulings. CML does not
seem to have a preemption mechanism and does not offer mobility
in the language.

Obliq [12] is a functional language that supports strong mobility
and remote references throughproxies. The semantics of their mi-
gration is to transform every free variable (here, all variables de-
fined prior to migration become free) into remote references. Obliq
also supports threads but the parallel, non-deterministic kind.

Kali Scheme [10] proposes mobile procedures that serve as RPC,
with the client providing the server with the procedure it wants it
to run. The remote procedure shares memory with the caller via
Address Spacesand proxies, which is comparable to ULM’s heaps
and references, except that ULM’s remote access is blocking while
Kali Scheme is proxied. Thread mobility is done by capturing the
current continuation of the thread and executing it remotely. Their
migration of the stack reuses a concept found in Emerald [5] where
only the top stack frames are migrated, while the rest are migrated
on-demand.

Erlang [4] is a functional language aimed at distributed program-
ming. It provides mobility in the same form as Kali Scheme, by
spawning an asynchronous process in a remote host by sending
a procedure there. Communication and synchronisation between
threads (remote or local) is done through messages and queues with
unidirectional and synchronous communication. The scheduling of
Erlang threads is preemptive, so critical sections have to be explic-
itly marked, and the execution of non-perfect critical sections is
non-deterministic and suffers from the usual debugging problems.

8 Conclusion

In this paper we have presented the ULM primitives and how to use
them to implement multi-threading and mobile programs that inter-
act with other unknown programs. We have shown the questions
mobility poses regarding variable access, and have proposed differ-
ent solutions to address them while preserving the local execution
reliability that ULM offers. We introduce duplicated and dynamic
variables for the Scheme implantation of the ULM primitives we
implemented, and show how this is intuitive for the programmer.
At the same time, we show how to use dynamic variables to inter-
act with other unknown agents.

Our prototype implementation of the compiler and virtual machine
serves as proof-of-concept for the ULM specification, and enables
us to implement functionalities as complex as RPCs with very few
lines of code. Indeed, we believe the set of primitives ULM pro-
vides is powerful enough to implement different types of distributed
programming techniques, while providing a clear and predictable
framework.



98

9 Bibliography

[1] A.P. Black – The Eden Programming Language– Technical Re-
port 85-09-01, Dept. of Computer Science, University of Washington,
Seattle, Washington, September, 1985.

[2] Alfonso Fuggetta and Gian Pietro Picco and Giovanni Vigna –Under-
standing Code Mobility – IEEE Trans. Softw. Eng., 24, (5), 1998, pp.
342–361.

[3] Christian Queinnec –Lisp in Small Pieces– Cambridge University
Press, 1996.

[4] ERLANG – http://www.erlang.org.

[5] Eric Jul and Henry Levy and Norman Hutchinson and Andrew Black –
Fine-Grained Mobility in the Emerald System – ACM Transactions
on Computer Systems, 6, (1), New York, NY, USA, February, 1988,
pp. 109–133.

[6] FairThreads –http://www-sop.inria.fr/mimosa/rp/FairThreads –
MIMOSA - INRIA.

[7] G. Boudol –ULM: a core programming model for global comput-
ing – Proceedings of ESOP 04, Lecture Notes in Computer Science
(LNCS), 2004, pp. 234-248.

[8] Gerard Berry –Constructive Semantics of Esterel: From Theory
to Practice (Abstract) – Algebraic Methodology and Software Tech-
nology, 1996, pp. 225.

[9] Gérard Boudol –The Recursive Record Semantics of Objects Re-
visited – Proceedings of the 10th European Symposium on Program-
ming Languages and Systems, 2001, pp. 269–283.

[10] Henry Cejtin and Suresh Jagannathan and Richard Kelsey –Higher-
Order Distributed Objects – ACM Transactions on Programming
Languages and Systems, 17, (5), September, 1995, pp. 704–739.

[11] John H. Reppy –Concurrent Programming in ML – Cambridge
Univ Press, 1999.

[12] Luca Cardelli –A language with distributed scope– Proceedings
of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1995, pp. 286–297.

[13] Manuel Serrano and Pierre Weis –Bigloo: A Portable and Opti-
mizing Compiler for Strict Functional Languages – Static Analysis
Symposium, 1995, pp. 366-381.

[14] Tatsurou Sekiguchi and Akinori Yonezawa –A calculus with code
mobility – Proceeding of the IFIP TC6 WG6.1 international workshop
on Formal methods for open object-based distributed systems, 1997,
pp. 21–36.


