
13

A Framework for Memory-Management Experimentation

Stephen P. Carl
Department of Mathematics and Computer Science
The University of the South, Sewanee, Tennessee

Abstract

Phobos is a framework for experimenting with memory manage-
ment systems. This framework provides two types of operation –
profiling program allocation behavior and simulating the actions of
memory management systems. Profiling is used to generate data
about a program’s allocation behavior including total memory al-
location and memory object lifetimes. Simulation is used to mea-
sure the performance of different memory management strategies
on particular program runs. In both cases, Phobos takes its input
from a trace filegenerated during execution of a targeted applica-
tion which lists the memory events of interest.

This paper describes the design of the Phobos system. In particular,
it shows how the system takes advantage of the code structuring
facilities provided by PLT Scheme, highlighting the use of signed
units, mixin classes, and other features of this system.

1 Introduction

We are developing Phobos, a framework for studying memory man-
agement systems. Most popular functional languages, such as
Scheme [15], and object-oriented languages, such as Java [1], use
some form ofgarbage collectionto implement automatic memory
management [13]. While there are a number of garbage collection
algorithms, most systems today have some form ofgenerational
collection available. Some languages best known for scripting ca-
pabilities, such as Perl [24] and Python [23], usereference counting
systems for automatic memory management, while implementa-
tions such as Jython [14] benefit from advances in the Java language
runtime. Our goals for Phobos include classifying the memory al-
location patterns of different types of applications and determining
how well or poorly different memory management algorithms in-
teract with these patterns.

The framework has two modes of operation:profiling, which can be
used for studying the allocation behavior of applications, andsimu-
lation, which can be used to determine how well different garbage

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming.September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Stephen P. Carl.

collection algorithms perform when matched with applications ex-
hibiting these behaviors. Information about an application’s use of
memory comes frommemory trace files, which contain information
about object allocations, object deallocations (for profiling), pointer
stores and pointer reads (for simulation), and so on. Trace files are
produced by instrumented virtual machines or interpreters which
log events of interest as they occur.

This paper describes the design of Phobos and simple examples
of how it is used. The framework design is based on the pro-
gram structuring features provided by PLT MzScheme, aR5RS-
compliant Scheme implementation featuring a number of useful ex-
tensions including a fully integrated module system, units for creat-
ing separately-compilable components, and a Java-like class system
which supportsmixin-basedprogramming [5]. We describe how
use of these language features helped create a system capable of
specifying various simulator configurations from information pro-
vided by the user.

2 Simulator Design

2.1 Design Goals

Phobos has been designed with the following goals in mind:

• Experimental Control. The user controls the system through
a script for specifying experimental parameters such as heap
size, input format, memory management components used in
simulation, and statistics to collect.

• Prototype Development. Implementations of new memory
managers can be prototyped to quickly explore the design
space.

• Language independence.While initial experiments are tar-
geted at Java programs, other languages can be accomodated
by providing an execution environment instrumented to pro-
duce trace files.

• Extensibility. Phobos can be extended to handle new types of
trace file formats, new memory management algorithms, and
new types of statistics to collect.

2.2 Structuring the System

The framework is divided into two sets of modules: theengineand
the simulation components. The engine is made up of the main
driver, handlers for reading trace files, and an interface for exper-
iment scripts. Simulation components are defined as MzScheme
classes and represent the heap and heap partitions, basic memory



14

management systems, and statistics generators.

The engine and components are combined according to informa-
tion in an experiment script which is written by the user to control
the simulator. Information from the script tells the system how to
combine the main driver with the functions which read a specific
trace file format. The script further specifies the memory manage-
ment functionality to be used; the script interface determines which
classes from the simulation components are needed and loads them
at startup time. The memory manager is made by combining classes
encapsulated inunits that represent allocation and collection sys-
tems with the heap classes. A detailed description of how and why
units are used in our framework is given in Section 5.

Trace handlersare functions which deal with specific memory trace
events given in a trace file. The framework currently supports three
formats, one for manual memory management, one for a JVMPI-
compliant profiling agent for Java programs [22], and one for gen-
eral simulation. New formats can be accomodated by developing a
new set of handler implementations. As each memory event is read
from the trace file, the driver transfers control to the appropriate
handler function for checking that the event is in the proper format
and creating an object that represents the trace. Such objects in turn
cause some change in the heap by sending it a message correspond-
ing to the event type (e.g., object allocation, object deallocation,
pointer store, etc.).

When profiling, the heap is used to simply store allocated objects,
then remove them when deallocated, while maintaining a set of
counters which track basic statistics. When doing simulation, the
heap object sends messages to one or moreheap frameswhich it
manages. A heap frame is conceptually just a range of addresses in
(simulated) memory, coupled with a specific set of methods for han-
dling allocation or collection; these impose a logical organization
on the heap frame. This organization allows us to model monolithic
heaps which use a single allocator and collector, and also heaps that
are partitioned into regions which are managed differently, such as
in generational garbage collectors.

The simulation components that report statistics log basic informa-
tion in each memory object allocated. The system produces two
files of raw data. Thelog file contains allocation time,1 size, and
deallocation time for each object allocated. Thelifetimes file con-
tains thelifetimesof each object, where lifetime is the difference
between deallocation time and allocation time. The information in
these files is suitable for processing by external tools such as Matlab
for producing graphs, such as object type and lifetime distributions.

3 Profiling Applications

The simplest use of the system is to profile the memory usage of
an application. A trace file to be used for profiling records the ac-
tions of the memory manager used by the system which executes
the application, including GC start and stop events, per-object al-
location and deallocation events, and object copy events. In profile
mode, Phobos simply replays these events in ashadow heapand
tracks information about each object and the events which affect
them. It also computes statistics about each object when they are
deallocated or the trace file ends, and displays the amount of heap
space needed by the application being profiled, the total amount of
allocation both in number of objects allocated and size of memory

1Per the GC literature, allocation time is measured in bytes al-
located so far – the first object is allocated at time 0, the next is
allocated at time 0 + (size of first object), and so on.

used, and the number of garbage collections required including the
number of objects and total memory collected at each.

The following simple script runs a single profiling experiment:

(experiment
(connect ’PROFILE "˜/traces/robo-trace"))

Theconnect form specifies the trace format type and the full path-
name to the trace file. When an experiment run begins, the sys-
tem selects the trace handlers to use based on the trace format type
(though this can be overridden in the script) and combines these
with the main driver and the simulation components used for pro-
filing. When invoked, the driver first attempts to open the trace
file specified, and then calls the trace handler functions to read and
respond to memory events stored in the trace file.

Once the trace file processing is completed, the system displays the
global heap statistics it has computed:

For this trace file run:
Total types recorded: 1022
Total amount of allocation: 98993720 bytes
Total number of objects allocated: 2350147
Total number of objects collected: 2237897

4786686 Events Processed

Also, the statistics component produces the object lifetimes and al-
location log.

4 Simulating Memory Managers

In simulation, the trace file produced when an application is run
contains allocation events, pointer update events, and enough in-
formation about the execution to drive the actions of a simulated
memory management system. A typical simulation script describes
each experiment to be run, including the trace file to be used, the
memory management system (or systems) to simulate, and the char-
acteristics of the simulated heap.

For example, the following script runs a single experiment using
a trace filerobo-trace on a typical heap managed by a best-fit
allocator and mark/sweep garbage collector:

(experiment
(connect SIM "˜/traces/robo-trace")
(base-heap 64 0 (allocator first-fit)

(collector mark-sweep)))

The simulation is again driven by the memory trace file in the path
specified in theconnect form. The second part of the experiment
script specifies the characteristics of the heap: size is 64 Mbytes,
the base of the heap (conceptually) starts at address 0, and it is
managed by a first-fit allocator and a mark/sweep garbage collector.
This script runs the experiment and reports the statistics just as in
the profiler.

The namesfirst-fit andmark-sweep are predefined. In general,
the names are used to choose the module in which the particular
class definition implementing these algorithms is found. For ex-
ample,first-fit is defined in a module in the filefirst-fit.scm,
which provides a class that implements the first-fit allocation pol-
icy. Actually, the algorithms are defined asmixin classes, and what
is provided is a function which creates a new class representing a



15

heap frame extended with the mixins. Section 6 describes this in
more detail.

Experimental setups can be defined and saved singly or in groups.
Saving an experimental setup by associating it with a name allows
results to be labeled with experiment names rather than with exper-
iment characteristics. In the example shown in Figure 1 we define
a set of experiments, called an experimentsuite, which will be run
one after the other by the simulator. The suite is defined by the form
define-experiment-suite .

5 Under the Hood

In MzScheme, aunit is a separately compilable component which
can be linked to other units to create a (as yet unevaluated) pro-
gram. Units may import external variables which are used in the
body of the unit, and may export its own variables to be imported
by other units. When the list of variables imported or exported is
long, signed unitsare used instead as a convenience. In this case,
the programmer providessignaturesto specify those names to be
exported to other units, and import using other unit’s signatures.
The program formed by linking units is evaluated wheninvoked
with the invoke-unit (with regular units) orinvoke-unit/sig
forms (with signed units).

In Phobos, evaluating an experiment script selects those units
whose code is to be used to handle specific types of traces and
construct the simulated heap. Scripts are processed by passing the
script file name on the MzScheme command line. The script is then
evaluated as Scheme code, using the definitions provided by Pho-
bos. Theexperiment form is a macro which uses the information
in its body forms to select the appropriate units (representing the
engine and required components) and link them together to create
acompound unitat runtime. Invoking this compound unit starts the
main driver.

The simple profiling experiment script shown in Section 3 elabo-
rates to thelet* form shown in Figure 2. This code creates and
invokes a compound-unit out of a set of signed units; the signa-
tures (defined elsewhere) are given by the symbols which end with
a caret (̂ ). The compound-unit is the result of linking the indi-
vidual unitshtprof-handlers@ , unit-heap@ , sim-driver@ , and
exp@together. The first three of these are loaded into the system at
runtime by a form (elided in the figure) calleddynamic-require .

The unit exp@, which comes first in thelet* form, defines the
“command line” for the engine, using parameters from the script.
Thecompound-unit form then links the units which define the spe-
cific trace handlers used by engine together with the simulated heap,
the driver unit, and the unit which defines the command line. The
driver unit exports the procedure namesim-driver used by the
new unitexp@. The link step returns the compound unitprg@ that
is invoked in thelet* . Invoking the compound unit has the effect
of callingsim-driver and running the simulation in profiler mode.
The results produced will be labeled with the experimental charac-
teristics, that is, the name of the trace file, the memory manager
used, and the heap size and layout.

6 Structure of the Simulated Heap

The simulated heap is made up of one or more heap frame objects.
For modeling monolithic heaps one heap frame is sufficient. How-
ever, in modern runtime systems heaps tend to be partitioned. Gen-
erational garbage collectors partition by age; other recently pro-

posed systems partition by type [17] or by connectivity [9]. To
model these systems, each heap frame represents a differentparti-
tion of the heap. Global attributes of the heap are captured by the
heap% class, which also holds the first heap frame. The structure of
the definition (minus method code) is as follows:

(define heap%
(class* object% (heap<%>)

(init-field
;; an object that collects statistics
stats
;; default heap size is 32 Mbyte
(initial-size (expt 2 25))
(max-size initial-size)
(alloc-frame

(make-object heap-frame% initial-size)))

(field (bytes-allocated 0))
(field (total-allocated 0))
(field (total-objects 0))

(define/public (allocate trace)
;; updates global properties of the heap
;; sends allocate message to alloc-frame

...)

(define/public (deallocate object-id)
;; updates global properties of the heap

...)

...)))

This definition creates the classheap% consisting of a set of fields
(three defined by theinit-field form and four by thefield
forms) along with a set of methods (only a subset of the class meth-
ods are shown). The fieldalloc-frame refers to the initial heap
frame. Each heap frame refers to the “next” heap frame in the sys-
tem. For example, to define a semi-space copying collector, two
frames are used, each refering to the other. For generational collec-
tors, each generation is a separate heap frame which each refer to
the succeeding generation in the system.

Each heap frame is defined by a classheap-frame% which includes
methods for allocating blocks, collecting unreachable objects, and
handling pointer reads and writes as shown:

(define (heap-frame% %)
(class* % (heap-wrapper<%>)

(inherit store! lookup remove!)
(rename (super-terminate terminate))
(init-field

initial-size
(next-frame ’()))

(field (frame-bytes-allocated 0))
(field (start-addr 0))
(field (end-addr (- initial-size 1)))
(field (roots ’()))

;; Method Declarations
(define/public (allocate-slot obj size)

;; allocates the next available block
;; large enough to store obj of given size

...)

(define/public (collect-slots)
;; dummy collector



16

(define-experiment-suite gc-suite
"run experiments on two tracefiles"
(experiment

(connect SIM "˜/traces/robo-trace")
(base-heap 32 0 (allocator first-fit)

(collector mark-sweep)))

(experiment
(connect SIM "˜/traces/kaffe-trace")
(base-heap 32 0

(partition (name nursery 16)
bump-pointer
(copy-promote (partition (name old 16) best-fit mark-sweep))))))

(simulate gc-suite) ;; kicks off experiments

Figure 1.

(let* ((exp@ (unit/sig () (import sim-driver)
(sim-driver "/traces/robo-trace" JVMPI (expt 2 24))))

(prg@ (compound-unit/sig (import) (link [HANDLE : trace-handlersˆ htprof-handlers@]
[SIMHEAP: unit-heapˆ unit-heap@]
[DRIVER : sim-driverˆ (sim-driver@ HANDLE SIMHEAP)]
[RUN : () (exp@ (DRIVER sim-driver))])

(export))))
(invoke-unit/sig prg@))

Figure 2. Elaboration of experiment form

...)

(define/public (read addr)
;; pointer read
...)

(define/public (write addr ptr)
;; pointer write
...)))

The default heap frame object implements theNoGCstorage man-
ager, which creates new objects in the next available chunk of
memory and removes objects without making the newly-freed
space available for future allocations. More useful allocator and
collector mechanisms are provided in the form ofmixin classes
which extendheap-frame% by overriding theallocate-slot and
collect-slots methods. Theread andwrite functions can also
be overridden for implementing read or write barriers as needed.
When a specific type of heap manager is chosen for simulation, the
heap frames are created by choosing appropriate allocator and col-
lector subclasses, creating extensions by mixing these in, and then
instantiating the resulting classes.

This organization is accomplished as follows: amixin is created in
MzScheme by defining a class whose superclass is specified as a
parameter, using thedefine form. For example:

(define (make-mixin super-class)
(class super-class ...extension...))

The actual class is created by calling the resulting procedure and
passing in the name of the superclass to be extended.

There are two main benefits of using mixin classes in this system.
First, allocators and collectors can be combined independently as
long as they are compatible (for instance, the system will gener-

ate an error when processing a script which pairs a non-moving
allocator with a copying collector). Second, when placed in their
own units, mixin extensions can be selected and combined to form
a single unit representing the simulated heap by importing the ac-
tual superclass at link time.2 This allows us to essentially create
different heap frame classes on the fly, combining them to form
a multiple-partition heap where each partition is managed using a
different strategy.

An allocation event only affects a single heap frame. Each alloca-
tion algorithm is defined in a separate unit as a mixin class which
contains at least the methodallocate-slot as shown in this ex-
ample:

(define (bump-pointer super%)
(class super%

(init-field
size
(pointer 0))

(define/override (allocate-slot trace)
;; defines new allocator

...)))

The procedurebump-pointer takes an argumentsuper% which is
the superclass of the mixin. Theallocate-slot method over-
rides that defined in the superclass. This mixin defines the “bump
pointer” allocator (also known as fast allocation) which reserves the
next free address in the heap frame for the object being allocated.
The init-field form defines two fields;size is the maximum
size of the heap frame, andpointer tracks the next available posi-
tion in the frame.

Collectors are created in the same way. A particular collector com-
ponent overrides the methodcollect-slots and can include any

2More information on the use of units and mixins in MzScheme
can be found in Findler and Flatt’s ICFP’98 paper [4].



17

other supporting methods or fields necessary. The collector com-
ponents will be combined with some superclass (again, not usually
known in advance) using the same mixin style as with allocators.
In general, thecollect-slots method is called by the allocator
when there is no more space available in the heap frame or some
threshold size is reached.

Once defined, units for allocators and collectors become part of a
library of components to be used in experiments. The name of the
module which defines a specific component is given in the experi-
ment script which selects the proper units and evaluates the proce-
dures for each mixin class. When evaluated, these procedures gen-
erate a new class which will extend eitherheap-frame% or some
subclass of it. The actual superclass does not have to be known in
advance. In this way, classes representing the simulated heap are
created on the fly based on the experiment script.

7 Memory Management Components

In this section we cover some of the forms used in Phobos exper-
iment scripts to generate the memory management classes. New
components are being added as the system matures. Components
are in general added by writing mixin classes built along the same
lines asbump-pointer . In more advanced cases, new macro forms
may be required.

7.1 Allocators

The allocator form specifies the unit to be used for alloca-
tion. Examples of allocators currently available include the de-
fault bump-pointer , simple first-fit allocation, and the more
advancedseg-freelist for implementing a segregated freelist al-
locator. An allocator is specific to a single heap frame.

7.2 Collectors

The collector form specifies a unit to be used for garbage col-
lection. Collectors defined using this form are generally used
to manage a single partition in the heap. Themark-sweep and
mark-compact collectors are two examples of collectors which can
be used with this form.

7.3 Partitioned Heaps

The formpartition allows the user to define the way the heap is
divided into heap frames, usually for copying collectors. This form
has the following structure:

(partition (name <identifier> <size>)
<allocator>
<collector>)

Thename subform is optional and associates an identifier with the
partition as well as its size (in Mbytes). Ifname is not used, the
size is specified there instead. The<allocator> and<collector>
parameters are either the unit names as described before, or one of
copy-to or copy-promote , each of which specifies copy collection
between partitions.

The form ofcopy-to is (copy-to size) , wheresizegives the size
of a second partition, or semispace. This form is used to create
a two-semispace copy collector. Elaboration of this form generates
two heap frames which refer to each other via thenext-frame field.

The form of copy-promote is (copy-promote partition-form) ,
wherepartition-form is another partition declaration. This is gen-
erally used to create a generational memory manager, though pro-
vision for promoting based on criteria other than age is planned.
The second partition form is the “older” generation which receives
copies of objects which survive collections of the original partition.
Note that partitions defined incopy-promote can themselves de-
clarecopy-promote as their collector (and so on) to generate more
than two generations. Currently the form uses a default remem-
bered set write barrier to catch intergenerational pointers.

8 Future Work

8.1 Instrumenting New Implementations

The Phobos framework was originally conceived as a tool to gauge
the allocation characteristics of functional languages designed to
compile to the Java Virtual Machine [20]. This is one reason why
our current set of trace files are generated by executing Java pro-
grams. In the future, we would like to conduct experiments with
trace files generated from progams executed directly by implemen-
tations of Scheme and other languages. This will require modifying
existing execution environments to generate information about the
memory events of interest.

The Garbage Collection website [12] includes a small repository
of memory traces, which is intended to eventually represent many
traces from applications written in different languages. The re-
search community has apparently been slow to contribute to this
repository; we would like to contribute to it soon and encourage
other researchers to do so.

8.2 Visualization

Currently all visualization of data generated by Phobos is done us-
ing Matlab to generate graphs. It would be nice to have a set of
tools for presenting interesting views of the allocation behavior of
the programs and the performance of the memory managers. We
will be evaluating other tools specifically aimed at graphing (such
as PLTplot [6]), and profiling (such as EVOLVE [25]).

8.3 Developing New Managers

The memory manager components defined in Phobos are useful for
studying the behavior of commonly used systems. The scripting
system needs to be more flexible, however, if newly proposed and
researched systems are to be implemented using this approach. In
particular, thecopy-promote form needs to be modified or com-
plemented so that alternative write-barriers can be specified as well
as different criterion for promoting objects.

Researchers who develop improved memory managers may want
to develop prototypes to study their high-level performance on ap-
plication traces. While writing allocators and collectors in Scheme
can be an enjoyable exercise, we would like to develop memory
management components in anembedded languagebuilt to work
directly with the experiment scripting facility. We would like to
try to develop such a “little language” [16] to aid in the process
of building up the framework. The more allocators and collectors
added to the library of components, the more experience we will
have to better understand the abstractions and interfaces that the
language must support.



18

9 Related Work

Simulators are used to study both the allocation behavior of specific
applications and the behavior of memory management techniques.
One of the first described systems was MARS, the Memory Alloca-
tion Research Simulator, described in Ben Zorn’s dissertation [26].
This simulator was attached to a running LISP system and allowed
the user to study the impact of using different (simulated) garbage
collection algorithms with a set of applications. Zorn also proposed
using a language specific to this domain for describing manage-
ment systems to be simulated, but did not define one himself. To
our knowledge this has not yet been attempted.

Simulation is also a key component in the work of Darkovic [19],
who studied age-based (generational) collectors in the context of
Smalltalk and Java, and Hansen [8], who studied older-first genera-
tional collectors in the context of Scheme.

Hölzle and Dieckmann developed a trace-driven simulator to pro-
vide data about the memory behavior of Java programs to the
garbage collection research community [3]. The system was driven
by memory traces generated from applications in the SPECjava98
benchmark suite. The simulator generated data for computing sta-
tistical information about object lifetime distributions, size varia-
tions, and the amount of heap space required to run each program.
Few if any such simulators have been made publically available to
the research community.

In the JikesTMResearch Virtual Machine, new memory manage-
ment mechanisms can be implemented directly (not simulated) by
subclassing a set of provided Java GC classes which provide the
base garbage collector. This allows the programmer to experiment
with and determine the effects of different managers on an applica-
tion or set of applications directly, without the need for generating
trace files. However, the entire virtual machine must be rebuilt (a
lengthy process) before testing a new manager [10].

Beltway is a framework built on top of Jikes which generalizes
copying garbage collection, such that each of semispace, genera-
tional, and older-first collection schemes can be defined in a com-
mon framework [2]. The simulated heap is divided into some num-
ber of partitions calledbelts. Each belt is made up of a number of
increments; an increment is the unit of allocation. Varying the size
and number of belts allows the user to construct any existing copy-
ing collector, or create entirely new ones. Furthermore, the system
supports partitioning objects in the heap by size, type, or call-site,
so several different object characteristics can be exploited at once.

10 Conclusion

This paper has described the design of a framework for profil-
ing the memory allocation behavior of applications and simulat-
ing memory-management systems. The framework uses program-
structuring features provided by PLT Scheme to build representa-
tions of the simulated heap from components chosen by an exper-
imenter at runtime. The use of units to compartmentalize code,
specify import and exports in a disciplined way, and link compo-
nents at runtime makes it possible to specialize the system based on
an experiment script.

This approach has given us the ability to build simulations for a
number of popular memory managers. It is not clear, however, that
building components in this way will be useful for alternative de-
signs currently being researched. It may turn out that some designs

may be more difficult to render given the high level of abstraction
represented by signed units and mixin classes. But for systems im-
plemented thus far, the approach has allowed us the flexibility of de-
veloping components for different allocation and collection mech-
anisms and make them available to the simulator.

11 References

[1] Ken Arnold and James Gosling.The JavaTM Programming
Language, 2nd Edition.Addison-Wesley, 1998.

[2] Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley,
and J. Eliot B. Moss. Beltway: Getting Around Garbage Col-
lection Gridlock. Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation. InSIGPLAN Notices.Vol. 37, No. 5, pp. 153–164,
May 2002.

[3] Sylvia Dieckmann and Urs Ḧolzle. A Study of the Allocation
Behavior of the SPECjvm98 Java Benchmarks. Technical Re-
port 1998-33, UCSB Computer Science Department. Decem-
ber, 1998.

[4] Robert Bruce Findler and Matthew Flatt. Modular Object-
Oriented Programming with Units and Mixins. Proceedings
of the International Conference on Functional Programming
(ICFP ’98). In SIGPLAN Notices, Vol. 34, No. 1, January
1999.

[5] Matthew Flatt.Programming Languages for Reusable Soft-
ware Components. Ph.D. thesis, Rice University, June 1999.

[6] Alexander Friedman and Jamie Raymond. PLoT Scheme.
Fourth Workshop on Scheme and Functional Programming,
November 7, 2003, Boston, MA.

[7] Richard P. Gabriel,Performance and Evaluation of Lisp Sys-
tems. MIT Press, Cambridge, MA, 1985.

[8] Lars T. Hansen.Older-first garbage collection in practice.
Ph.D. thesis, Northeastern University, November 2000.

[9] Martin Hirzel, Johannes Henkel, Amer Diwan, and Michael
Hind. Understanding the connectivity of heap objects. In
The 2002 International Symposium on Memory Management
(ISMM 2002), pp. 36–49, Berlin, Germany, June 2002. ACM
Press.

[10] Jikes Research Virtual Machine from IBM.
http://www.ibm.com/developerworks/oss/jikesrvm .

[11] Richard Jones’ Garbage Collection Bibliography.
http://www.cs.kent.ac.uk/people/staff/rej/gcbib .

[12] Richard Jones’ Garbage Collection Pages.
http://www.cs.kent.ac.uk/people/staff/rej/mtf/traces .

[13] Richard Jones and Rafael Lins.Garbage Collection: Algo-
rithms for Automatic Dynamic Memory Management.John
Wiley and Sons, 1996.

[14] Jython Homepage.
http://www.jython.org/

[15] R. Kelsey, W. Clinger, and J. Rees (Eds). The Revised5 Re-
port on the Algorithmic Language Scheme.ACM SIGPLAN
Notices, Vol. 33, No. 9, September 1998.

[16] Olin Shivers. A universal scripting framework, or Lambda:
the ultimate “little language.” InConcurrency and Paral-
lelism, Programming, Networking, and Security,Lecture
Notes in Computer Science #1179, pages 254–265, Editors
Joxan Jaffar and Roland H. C. Yap, 1996, Springer.



19

[17] Y. Shuf, M. Gupta, R. Bordawekar, and J.P. Singh. Exploit-
ing prolific types for memory management and optimizations.
Proceedings of the 2002 SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’02). InSIG-
PLAN Notices, Vol. 37, No. 1, pp. 295–306, January 2002.

[18] Standard Performance Evaluation Corporation.SPECjvm98
Documentation, Release 1.0. August 1998.
http://www.spec.org/osg/jvm98/jvm98/doc/index.html .

[19] Darko Stefanovic. Properties of Age-based Memory Recla-
mation Algorithms. Ph.D. thesis, University of Mas-
sachusetts, February 1999.

[20] Robert Tolksdorf. Languages for the Java VM.
http://www.robert-tolksdorf.de/vmlanguages.html .

[21] Sun Microsystems Inc. The HotSpotTM Performance Engine.
http://java.sun.com/products/hotspot .

[22] Sun Microsystems Inc. Java Virtual Machine Profiler Inter-
face (JVMPI).
http://java.sun.com/products/jdk/1.2/docs/guide/
jvmpi/jvmpi.html .

[23] Guido von Rossum.Python Tutorial.
http://www.python.org/doc/current/tut .

[24] Larry Wall, Tom Christiansen, and Randal L. Schwartz.Pro-
gramming Perl, 2nd edition.O’Reilly & Associates, Inc.,
1996.

[25] Qin Wang, Wei Wang, Rhodes Brown, Karel Driesen, Bruno
Dufour, Laurie Hendren and Clark Verbrugge. EVolve, an
Open Extensible Software Visualization Framework. Sable
Technical Report SABLE-TR-2002-12. McGill University,
School of Computer Science, 2002.

[26] Benjamin Zorn. Comparitive Performance Evaluation of
Garbage Collection Algorithms. Published as CSD-89-544
from University of California, Berkeley.



20


